
Banker’s Algorithm Implementation
in CPN Tools

Michal Žarnay1

University of Žilina, Univerzitná 8215/1, SK-01026 Žilina, Slovak Republic.
michal.zarnay@fri.uniza.sk

Abstract. When constructing discrete simulation models of complex
transportation systems, their designers face problems of deadlock states
occurring in the course of simulation. When analyzing it, the issue was
transformed to a problem of solving deadlock states in resource alloca-
tion systems (RAS) with non-sequential processes with flexible routing
and use of resources of multiple types at once. As a suitable deadlock-
avoidance policy, the banker’s algorithm (BA) has been chosen. The task
was to modify the basic version of the BA and to test the developed al-
gorithm on a sample transportation system with the outlined properties.
As a suitable environment for this, the CPN Tools were chosen, what
led to an implementation of the modified version of the BA in the CPN
ML, language used by the CPN Tools. The paper explains modifications
of the algorithm, describes an implementation of it in the CPN ML and
shows its use on a coloured Petri net model of a small example from the
outlined category of the RAS.

1 Introduction

Motivation for this work came from the field of detailed computer simulation of
complex transportation systems, such as railway marshalling yard processing a
few thousands of wagons per hour in trains of various technological processing
descriptions with help of over one hundred resources (individual tracks, locomo-
tives, members of personnel). From experience with real projects, main techno-
logical processes in complex systems are usually clearly defined, however, there
are often little details complicating the models and causing that designers of
models face problems of deadlock states occurring in the course of simulation.

Deadlock state is a state of a system, where two or more system processes
are blocked in their execution because they wait for two or more resources, and
the awaited resources are at the same time occupied by the processes included in
the waiting list. The waiting processes thus block and are blocked. Unblocking
this state is possible only by an exceptional operation.

When analyzing the issue, we learnt that it is similar to solving of deadlock
states in other fields like flexible manufacturing systems, and that it has been
tackled in literature for many years. However, none of the proposed solutions
seemed to be adequate for this problem. Further analysis in [1] transformed
the issue to a problem of solving deadlock states in resource allocation systems

2

(RAS) with non-sequential processes with flexible routing and use of resources
of multiple types at once.

As a suitable deadlock-avoidance policy for such a system, the banker’s al-
gorithm (BA) has been chosen [1]. The task was to modify the basic version of
the BA and to test the developed algorithm on a sample transportation system
with the outlined properties. From our literature review, we are not aware of any
use of the BA in a RAS combining flexible routing with concurrent processing.
As a suitable environment for this, the CPN Tools were chosen: to construct a
CPN model for the sample system and to implement an adjusted version of the
BA. Reasons of this decision lie in the abilities of Petri nets and CPN Tools to
construct a model of a RAS quicker compared to other means, e.g. high-level
programming languages, and to facilitate a qualitative analysis of the model with
and without the BA for testing its effectiveness in deadlock avoidance. In the
end, the algorithm itself has been implemented in the CPN ML, language used
by the CPN Tools.

From the complex work, this paper focuses on explaining basic modifications
of the BA, describing an implementation of it in the CPN ML and showing
its successful use on a coloured Petri net model. For the illustrative model,
however, only a theoretical example from the outlined category of the RAS has
been included, since the model of a sample transportation system developed in
[1] and briefly described in [2] is too complex to serve as a basis for showing the
algorithm.

The paper is organised as follows. In the section 2, we introduce background
for the paper about resource allocation systems and their modelling in Petri nets,
and the banker’s algorithm and our modifications for the studied system. The
section 3 describes the implementation of the modified algorithm in the CPN
ML, its integration with the CPN model and its analysis results. That is followed
by discussing main contributions and issues of the work in the conclusion.

2 Starting Point

2.1 Resource Allocation System in Petri Net

Resource allocation system (RAS) is a system consisting of concurrently running
processes that in certain stages, in order to get successfully completed, require
an exclusive use of certain number of system resources [3]. Resources are limited
and re-usable as their allocation and de-allocation changes neither their charac-
ter nor quantity. Based on its character, a process in the RAS is sequential or
non-sequential, i.e. some stages of the process run concurrently. The resulting
system is then either sequential (if all involved processes are sequential) or non-
sequential (if at least one process in the system is non-sequential). Furthermore
a process may contain flexible routing, which means that in a certain moment, a
process execution continues in one of available options and if correctly defined,
taking any of them brings the process to the same final state. Finally, the num-
ber and the type of resources allocated at the same time distinguish between

3

a single-unit RAS (every process is allowed to have only one resource unit al-
located at a time, i.e. before allocation of the next resource, the previous must
be returned), a single-type RAS (at least one process has two or more units of
the same resource type at a time) or a multiple-type RAS (at least one process
has two or more units from two or more resource types at a time). The outlined
attributes create categories of the RAS with varied complexity.

The system used in this paper is a non-sequential multiple-type RAS with
flexible routing. It means that at least one process in the system combines flexible
routing with concurrent execution. To distinguish modelling elements of both
properties, we use the following naming convention in the paper:

– Variant – one of possible routes of a process execution (sequential or non-
sequential) that is chosen by flexible routing

– Branch – a part of a process that is executed concurrently with another part
(branch) of the same process

For the modelling of a RAS, the coloured Petri net (CPN) is used. In the
net, subnets of two types are found: a process subnet and a resource subnet.
A process subnet consists of places, transitions and arcs in a structure starting
by an initial transition and ending with a final transition and describing causal
relations between stages of a process. A stage (a task) in the process corresponds
to a place and events of beginning and ending of tasks correspond to transitions.
Together with a place for idle processes (let’s denote it P0), which connects the
final transition with the initial transition of the process description, it makes
a strongly connected component. The variants of the flexible routing in the
process description are created, when at least one place has at least two output
transitions (conflict in Petri net, like in state machines) and another place has
at least two input transitions, while all possible routes in the process subnet
contain the place P0. The branches of the concurrent processing are created,
when a transition has at least two output places and another transition has
at least two input places (synchronization in Petri net, like in marked graphs),
while the place P0 is in a part of the subnet with no more than one branch.
A resource subnet consists of one place and adjacent arcs. Content of the place
represents actually free resources and arcs express their allocation and release
to and from stages of processes. Typically, there are several process subnets, one
for each modelled process, and one resource subnet in a RAS model.

For a description of the system’s dynamic behaviour, we’ll distinguish be-
tween process types and process instances. The process type is an abstract de-
scription of a process. The process instance is a concrete occurrence of a process
according to a process type. In the CPN, the process type is modelled by the
process subnet and the process instance by one or more tokens of one colour.
A position of a token in a place of the process subnet represents a stage of the
process and a combination of places occupied by tokens of the same value consti-
tutes the actual state of the process instance. Similarly, there are resource types
and resource instances. The former modelled by colours of a colour set for all
resources (one resource type = one colour) and the latter by individual coloured

4

tokens (number of tokens of a colour = number of resources of the respective
resource type).

The figure 1 depicts a CPN model of an illustrative RAS that we use in
this paper. The system contains one non-sequential process type modelled by
the process subnet. The places P1, . . . , P9 represent individual activities (tasks)
in the process. The place P0 represents the outside environment, where the
finished process instances (tokens coming to the place P0) get replaced by new
ones before their processing (tokens leaving the place P0). Transitions T1, . . . , T9
interlink the activities to give them a logical structure.

An execution of the process type is divided into two branches from the initial
transition T1, which continue until the final transition T9. The left-hand branch
is further divided into two variants between the places P1 and P8. The left-
hand variant of these has further 2 branches between transitions T2 and T8.
The place P0 contains two tokens of different colours from the integer colour set
cProcessID modelling two process instances currently outside of the system.
When an instance is in the system, it is represented by two or three tokens of
the same colour, depending on the number of branches visited in the actual state.
Movements of the coloured tokens are facilitated by the variable proc present on
all the arcs in the process subnet.

The place Resources with adjacent arcs represents the resource subnet. The
arcs define relations of allocation/release of resources to/from process activities.
Nine tokens in the place Resources of 3 colours R1, R2 and R3 from the colour
set cResources represent nine available resource instances, three of each resource
type.

2.2 Banker’s Algorithm

The banker’s algorithm, first introduced in [4], uses information about a current
system state to decide, whether an allocation request of a process instance can
be fulfilled. It is called every time, when an allocation request is made. It tries
to find, whether the allocation leads to a safe state, i.e. a state, from which all
running processes can finish their execution. If yes, the request can be fulfilled,
otherwise, the requesting process instance must wait until another process in-
stance returns resources. In order to decide, whether the state is safe, the BA
tries to order all running process instances in such a sequence, so that each
of them can be finished with resources that it has currently allocated or that
are currently available in the system or that are returned from finished process
instances already in the sequence prior to the tested process. If it succeeds in
finding such a sequence, we say that the state is ordered, and since every ordered
state is safe [5], the state is also safe. If it fails to find the sequence, we say that
the state is unordered, which does not mean that the state is unsafe. However,
the allocation request cannot be fulfilled. This is due to the suboptimality of
the BA, while finding an optimal algorithm for solving the question about state
safeness is a NP-hard problem.

The basic principle of the BA is described in a pseudo-code based on the
Algorithm 1 from [5]. It uses the following data structures:

5

�� ������ ������
�� ��

�� �� �� ���� ���� ��
�� �� ���� ��

�� ������ ��
�� ������ ��

� ��	
� ��	 � ��
	� ��	

� ��	� ��	
� ��	

� ��	
� ��	
� ��	

� ��	

� ��	
� ��	� ��	 � ��	

� ��	
�� � ��	� ��	� ��	

� ��	� ��	
� ��	

�
�

�

�

�
�

�

�
� 	� ��	������� 	� ��	�����

��	� ��	�����

�� 	� ��	�����

�� 	� ��	�������	� ��	������� 	� ��	�����

��	� ��	������� 	� ��	�����

� ���� �	���� ���� �� �� �� �� �� 	� ���� �	��

���� ����� � 	� ��	�����

��� ���� �� �� �� �� ��

��� ��� �� �
Fig. 1. CPN model of illustration RAS.

6

– Allocated – a matrix of allocated resource units to process instances
– Allocated[i][j] – a number of resources of the kind j allocated to the process

instance i
– Needed – a matrix of needed resource units to finish execution of process

instances
– Needed[i][j] – a number of resources of the kind j needed by the process

instance i
– Available – a vector of available resource units in the system
– Available[j] – a number of available resources of the kind j
– S – a set of all process states currently being executed by process instances
– Π – a set of identification numbers of process stages in S
– R – a set of all resource types
– p(i) – the i-th item in the vector of all running process instances p

When called, the algorithm uses data about a current state of the system in
the data structures Allocated, Needed and Available as input and provides an
answer to the question Is the given state ordered? as output values Admit or
Reject:

begin
// Set of currently running process instances. //

Π = {1, 2, . . . , | S |};
loop

// If all instances have been ordered, admit the state. //
if Π = ® then return Admit

// Otherwise find a p(i) that can be added to the order. //
else find i ∈ Π such that

Needed[i][j] ≤ Allocated[i][j] + Available[j];
if no such i exists, return Reject;

// Otherwise, add p(i) to the order. //
for j = 1 to | R | do begin

Available[j] = Available[j] + Allocated[i][j];
Allocated[i][j] = 0;
Needed[i][j] = 0;

end;
Π = Π \ i

end loop
end

The outlined algorithm has been tested for a sequential single-unit resource
allocation system (RAS) with flexible routing [5].

The algorithm assumes that as each process instance enters the system, it
declares the maximum number of units of each resource type needed for its
execution. In a more elaborated version, supportive routines update the number
of remaining needed resources of each type of the system processes based on
descriptions of their execution and actual positions of process instances [5] [6]
and [7].

7

Applications of the banker’s algorithm described in the mentioned literature
sources as well as in [8], [9] and [10] have been connected with the sequential
RAS-s only. On the other side, authors in [11] consider a banker’s-like dead-
lock avoidance policy for a RAS with non-sequential processes without flexible
routing. Our literature review did not bring to our attention any application of
the banker’s algorithm or banker’s-like deadlock avoidance policies that would
treat a RAS combining both concurrent processing as well as flexible routing in
a process.

2.3 Modifications of Banker’s Algorithm

Data structures (the matrices Allocated, Needed and the vector Available) used
by the original version of the BA stay the same in our implementation except
renaming the Needed matrix to RemainingNeeded to express more precisely
that a content of the data structure is modified during a process instance exe-
cution. Resources that will not be requested any more, are subtracted from the
vector after their allocation. Only those resources will stay recorded that will
be requested in the remaining part of execution. This is based on the assump-
tion that we know process descriptions and we know states, when values of the
RemainingNeeded vector are changed.

In [7], it is proposed to assign values of the RemainingNeeded vector to
individual process stages of a process on its route to the end of execution. This
proposal is suitable for flexible routing, but not for concurrent processing of non-
sequential processes. In such processes, the current process instance state may
be represented by tokens in more than one place, where the places are in dif-
ferent branches. Since tokens in branches move concurrently, the order of their
movements is non-deterministic and it is not possible to know the number of
currently allocated and the number of remaining needed resources for each place
(for the time, when a place is occupied by a token) generally for all possible
executions. That’s why we introduce vectors of relative changes (called Change)
which modify the RemainingNeeded vector for the current process instance
according to the change in the allocation of resources in the related stage. If re-
sources are being allocated, the Change vector will contain a positive number of
the allocated units, if released, the number will be negative. The Change vector
must be defined for each process stage with any allocation or release of resources.
In addition, it is necessary to take into account, whether resource units will be
allocated to the same process instance repeatedly, i.e. allocations and releases
of a unit of the same resource type occur in disjunctive time periods at least
two times till the end of the process instance execution. This is recorded in the
RemainingNeeded vector through values of the Change vector distinguishing
two groups of bits in the integer used by every release of resource units. An item
of the Change vector expresses a number of units of the relevant resource type
that are to be allocated/released. When a value of the Change vector contains
a non-zero number encoded in the lower half of the bits (the bits 0-3 by 8-bit
numbers), the corresponding units will be used again. When a non-zero number

8

is encoded in the upper half (the bits 4-7), the units won’t be used again. For in-
stance, if there are 2 units released without a planned re-allocation, the number
will be −32. If they were both to be re-allocated later, the number will be −2,
if only one should be re-allocated, the correct number will be −17. The outlined
mechanism is relevant only for releases of resources. By allocations of resource
units, only the lower half of bits is considered.

As for the division of bits, it is not necessary that the available bits are divided
into two halves. It is important that the smallest used part of bits is enough to
record the highest number of resource units allocated or released at once in the
modelled system. The chosen bits are manipulated with help of operations divide
(/) and modulo (\) and of a relevant constant called ByteDiv (for the discussed
division to upper and lower bits of an 8-bit value, ByteDiv = 16).

The routine updating the three main data structures then looks as follows:

for j = 1 to | R | do
if Change[j] 6= 0 then do begin

if Change[j] < 0
then ChangeV alue = −((−Change[j])/ByteDiv

+ (−Change[j]) \ByteDiv)
else ChangeV alue = Change[j]/ByteDiv + Change[j] \ByteDiv;
Available[j] = Available[j]− ChangeV alue;
Allocated[i][j] = Allocated[i][j] + ChangeV alue;
if Change[j] ≤ 0
then ChangeV alue = −(−Change[j]) \ByteDiv
else ChangeV alue = Change[j] \ByteDiv;
RemainingNeeded[i][j] = RemainingNeeded[i][j]− ChangeV alue

end;

The vectors of relative changes are used not only for (de)allocation of re-
sources, but also for flexible routing. The RemainingNeeded vectors may be
different for individual variants of a process description, while every process in-
stance must have one of them in its initial state. That is why we propose two
steps to carry out:

1. To order all available variants of the process description and to set the first
of them as primary – its RemainingNeeded vector will be initial for every
process.

2. To define a differential vector between an old and a new variant for every
point in the net, where a switch of the two variants is realized.

In the illustrative example, the switch from the primary to the secondary
variant is necessary on realizing the transition T3 providing the variant with the
transitions T2, T5 and T8 is primary and variant with T3 and T6 is secondary.

In summary, our modifications to the banker’s algorithm consist of renaming
the Needed data structure to RemainingNeeded (otherwise the original algo-
rithm in the section 2.2 is the same), specifying details of the routine updating
the BA data structures and defining related change vectors for every stage of

9

processes with a (de)allocation in the underlying system. The changes were mo-
tivated by the fact that the original algorithm has been constructed for a simpler
class of RAS than our application RAS.

3 Banker’s Algorithm in CPN

3.1 Construction in CPN ML

Apart from the BA main logic (finding, if the new state is ordered), the imple-
mentation needs data structures and routines for recording and managing infor-
mation about a current state of running processes in the system. Both parts are
implemented in user-defined functions of the language CPN ML. In the following
sections, we describe colour sets, variables, constant values and functions used.
They are fully cited in the appendix.

Data Structures The principal data structure is defined by the colour set
cBankerAlgData, which is a product of three components corresponding with
the above mentioned matrices Allocated, RemainingNeeded and the vector
Available. The first two components are of the colour set cAllProcessesWRes,
which is a list of items as products cProcessID ∗ cResNumbersList. Each
product represents a process (cProcessID) and a list of numbers of resources
(cResNumbersList), where each list item corresponds to one resource type. The
third component of the cBankerAlgData product is of the latter colour set. An
example of use of the cBankerAlgData structure is seen in the constant value
vInitBAData.

Content of the value vInitBAData corresponds to the above discussed illus-
trative RAS in its initial state. The model has two process instances, which in the
beginning contain no resources, hence the Allocated part of the vInitBAData
contains the following list of values: [(1, [0, 0, 0]), (2, [0, 0, 0])]. Needs of the pro-
cess instances (initial value of the RemainingNeeded matrix) are in the second
row of the vInitBAData value definition and express that both process instances
have the same needs expressed by another constant value:
[(1, vInitMaxNeedPrimary), (2, vInitMaxNeedPrimary)]. The value
vInitMaxNeedPrimary corresponds to maximal needed numbers of resources
for one execution of the primary description of the process type, and that is 2
units of the resource type R1, 3 units of R2 and 1 unit of R3 (it can be verified
in the model at fig. 1).

vMaxNeedPrimarySecondaryDiff is the difference vector between the pri-
mary and the secondary variants of the example’s process type description. This
means, that the secondary variant has the maximal needs [1, 3, 2]. vByteDiv is
the factor for the division of bits in a byte to two halves.

The final group of constant values defines the change vectors (implemented
as CPN ML lists) that modify the BA data structure by firing of individual
transitions T1 to T9. Values in vectors correspond to the explanation in the
section 2.3 and are connected to the original model on the fig. 1. For instance,

10

the list [∼16,1,∼16] of the vChangeT6 constant value corresponds to the change
on the T6 transition in the model: an allocation of one unit of the resource R2
and a release of the resources R1 and R3 (one unit of each), while both units
will not be requested again in the process type description.

Functions Hierarchy Relations among functions in the CPN implementation
are depicted at the figure 2. Arcs represent relations of calling – from a superior
function to a subordinate function in the direction of their arc. The functions are
divided to three groups. The Main Algorithm group corresponds to the slightly
modified pseudo-code from the section 2.2. The Data Structure Manipulation
functions implement the manipulation with data structures introduced in the
section 2.3. Finally, there are General functions that are not directly attributed
to the banker’s algorithm. They work with lists of integers – they use a recursion
to look through the lists and produce their results.

General Functions The ModifyList function modifies the list pA with the list
pB returning a new list in which for every item: pA+pOper∗pB (relevant items in
the given lists). It is assumed that both initial lists contain integer values and the
parameter pOper determines, whether the operation is an addition (pOper = 1)
or a subtraction (pOper = ∼1). The IsIn function checks, if all items of the
list pA are less than or equal to equivalent items of the list pB (i.e. pA ”is in”
pB). The function is widely used to compare vectors of resources required and
available, and to check, if the request can be covered.

The ULBits and LowerBits functions look at given numbers in the pList list
parameter as two-part numbers: upper and lower bits, where the edge is defined
by the vByteDiv value (bits manipulation is discussed in the section 2.3). The
former function sums up numbers encoded in the upper and the lower bits of
values in the given pList, e.g. the given list [∼32,18,∼7] is changed to [∼2,3,∼7].
The latter function retrieves only numbers encoded in lower bits of values in the
given pList, in the example it returns [0,2,∼7].

Data Structure Manipulation Functions Most of the CPN ML functions
for the banker’s algorithm work with lists, thus use a recursion to traverse them.

A set of functions uses an abbreviation PRL that stands for a list of pro-
cess instances with a list of resources adjacent to it, shorter process-resources-
list. The functions are used to manipulate with data in the Allocated and the
RemainingNeeded lists. The LocateListInPRL function locates the PRL of
the process of pKey in the pPRL list and returns its list of resource numbers.
The ModifyPRLList function modifies the given PRL-type list: it selects the
item with the pKey and modifies its resource number values according to the
pOper operation (addition or subtraction) and returns the updated PRL list.
The RemoveItemFromPRLList function removes the item with pKey from
pPRLList and returns the updated PRL list.

The simple function ChangeMaxNeed only updates BA data according to
the pChange item. It is used for switching from an old to a new variant of

11

Fig. 2. Diagram of functions in the CPN ML implementation.

12

process description by flexible routing. The pChange argument contains the
ID of the process instance and the difference vector between the switched vari-
ants. It affects only the middle part of the BA data structure related to the
RemainingNeeded matrix and only its item related to the given process in-
stance ID.

The ModifyBAData function modifies data for the banker’s algorithm given
in the pBAData parameter by data from the pChange parameter, which iden-
tifies the respective process instance and contains the change vector with infor-
mation encoded in its lower and upper bits as explained above. All resources
stated in the change vector (i.e. upper and lower bits) are added to the allo-
cated resources of the given process and subtracted from the list of all available
resources in the system. However, only the resources encoded in lower bits af-
fect the remaining needed resources of the process (see the 2nd statement in the
function).

Main Algorithm Functions The FindAllowedProcess function looks for an
item in the list of running process instances (pRemainNeed), remaining needed
resources of which can be covered by the list of available resources (Avail), i.e.
a process that can be finished with current available processes. If no process is
found, it returns ∼1, otherwise the ID of the process found.

The IsStateOrdered function is the principal function of the banker’s Al-
gorithm. It tries to find an ordered sequence of process instances that can be
finished in the given conditions. If it is successful, it returns the ordered pro-
cess sequence. If not, it returns a list with 1 item: [∼1]. [∼2] serves only for
recognizing the bottom of the recursion – when all processes were chosen to the
order.

Finally, the top function CanItBeAllocated in the hierarchy answers the
question, if the process instance with its resource request can be allocated the
requested resources. It checks, if the state after the allocation will be ordered –
then it returns true, otherwise false.

3.2 Adding Banker’s Algorithm to CPN Model

In this phase, there are two tasks to fulfill:

– To construct the required data structure in the CPN and to connect it to
the underlying CPN model of RAS,

– To interlink all points of allocation in the model with calls of the BA.

The BA data structure is represented by one token of the cBankerAlgData
colour set in a dedicated place called Banker′sAlgData (see fig. 3). Its initial
value is equal to the constant value vInitBAData (see section 3.1). The connec-
tion of the new place to the underlying model is made via pairs of arcs with all
transitions, at which contents of the BA data structure are to be changed, i.e. all
transitions, where at least one resource allocation or release is modelled. One of
the arcs in a pair leads from the place Banker′sAlgData to the transition and

13

brings the BA data structure token through the variable BAData in the arc in-
scription to make it available for an execution of the banker’s algorithm and for
an update of data in case the transition fires. The other arc leads in the opposite
direction and contains a call to the function ModifyBAData in order to update
the data structure after the transition has been fired. As arguments, the function
needs the process ID, the respective change vector in resource allocation and the
BA data structure itself, for example:

ModifyBAData ((proc, vChangeT5), BAData)

where vChangeT5 is a constant value containing the change vector for firing
the transition T5 (proc and BAData are variables bringing the other needed
arguments in).

The BA is called in guards of all transitions where a resource allocation
request is made. In our example, it is at all transitions except T7 and T8. The
top BA function CanItBeAllocated is called with the same arguments as the
ModifyBAData function, for example:

[CanItBeAllocated((proc, vChangeT5), BAData)]

Being in the transition guard, the algorithm has direct effect on whether the
transition is enabled or not. It serves as the last condition for enabling the
firing after all basic conditions secured by the structure of RAS (a process in-
stance is in the appropriate state, resources to be allocated are available) are
fulfilled. If the state to come after firing is safe according to the algorithm, the
CanItBeAllocated function will allow the transition firing. In case that not, the
transition will not be enabled. It can be, however, enabled in the future – when
the state of the RAS model changes and the transitions in the CPN affected
by the change will be re-calculated, the result of the function (while not chang-
ing the basic conditions for the transition) may become positive and enable the
transition.

When a process instance chooses another variant of execution by flexible
routing, the guard of the relevant transition contains a modification of the max-
imal needed resources for the given process instance via the ChangeMaxNeed
function. In the illustrative model, it happens on the transition T3 and its guard
is the following:

[BADataAmended =
ChangeMaxNeed ((proc, vMaxNeedPrimarySecondaryDiff), BAData),
CanItBeAllocated ((proc, vChangeT3), BADataAmended)]

The amended data structure in BADataAmended is then used in the inscription
of the arc from the transition to the Banker′sAlgData place instead of BAData.
For the transition T3 in the example, it is:

ModifyBAData ((proc, vChangeT3), BADataAmended)

14

� ������ �� 	
	�����
����	������ �� �� 	

	�

� �� 	
	� �� 	
	� �� 	
	 � �� 	
	� �� 	
	� �� 	
	� �� 	
	 � �� 	
	� �� 	
	

�� ������ ������
��
��

�� �� ��
�� ������ ��

�� ������ ��

���

��� �
�����

������
���

���

���

���

���

���
���

��� ���
���

�� ���������
������

���

���

��

��

��

�!" �	�#
� ��$$ ��	

�� ���������	����!�
�� �� 	
	�%

�&
�'

��
(� �(���))#�

� 	�* �+)�$ � � 	
	

(! �(���))#�
('�(���))#�

(� �(���))#�

(� �(���))#�(�(���))#�(� �(���))#�

(&�(���))#�(� �(���))#�

� �)�,��)

(-�� ����� �
" � �� 	
	�. ��� ��/
��	���� 	01���
�������� 	01��� (
� . 	�2 ����� 	� ����
� �
� �� 	
	� � �	�#
� ��$$ ��	
�� ���������	������

�� �� 	
	�. ��� �� �%
" �	�#
� ��$$ ��	
�� ���������	����&�

�� �� 	
	�%

�# ��
� �� 	
	 �� 	�* ��$ �� 	
	
�(���))#�" �	�#
� ��$$ ��	
�� ���������	������

�� �� 	
	�%

�� ���� �� ���� �� �� �� �)�,��)

" �	�#
� ��$$ ��	
�� ��
�������	������ ��
�� 	
	�% �� ���
��� �� �� ������ ��

" �	�#
� ��$$ ��	
�� ���������	���� �
�� �� 	
	�%

" �	�#
� ��$$ ��	
�� ���������	����'�
�� �� 	
	�%

� ������ �� 	
	�����
����	������ ���	�
��� 	01��� ������
�# ��
� 	01��� (� . 	
� � �� �� 	
	��

� ������ �� 	
	�����
����	����'� �� �� 	

	�

� ������ �� 	
	�����
����	����!� �� �� 	

	�

� ������ �� 	
	�����
����	���� � �� �� 	

	�

� ������ �� 	
	�����
����	����&� �� �� 	

	�

� ������ �� 	
	�����
����	������ �� �� 	

	�

� ������ �� 	
	�����
����	������ �� �� 	

	�. ��� �� �

� ������ �� 	
	�����
����	������ �� �� 	

	�

��� �" �� �" - �- �-% � �
�� �" - �- �-% �% �" �� �" � ��
��% � �
�� �" � �� ��% �% �" � �� ��% �

��� ���� �� ���� �� ��

��� ��� �� �

Fig. 3. CPN model of illustration RAS with banker’s algorithm.

15

After its execution, a finished process instance is replaced by a new process
instance in the place P0. In the BA control subsystem, it is reflected by a use
of the ChangeMaxNeed function in the inscription of the arc from the last
transition of the process type description to the Banker′sAlgData place – to
update maximal needed resources for the new process instance in the BA data
structure to the initial vInitMaxNeedPrimary value. Inscription of the arc (in
the illustration model from transition T9) looks like this:

ModifyBAData ((proc, vChangeT9),
ChangeMaxNeed ((proc, vInitMaxNeedPrimary), BAData))

3.3 Analysis Results

The effect of the banker’s algorithm to avoid deadlock states in a modelled
system is measured by a number of deadlock states in the occurrence graphs of
two CPN models. One is the RAS CPN model without the BA implementation
and the other one with it. It is expected that in the first case, the number of
deadlock states is not zero, i.e. there are deadlock states in the original RAS to
be eliminated. Then, if the deadlock avoidance of the BA is effective, the number
of deadlock states in the second model goes down to zero.

In the validation and verification phases, we also further used liveness and
home properties of the available analysis tool to check, if the existence of the
BA control does not restrict the behaviour of the model in an unappropriate
manner, i.e. if all the transitions in the model can occur and whether all reachable
markings form a home space. The state space report proved that it was correct.

Furthermore, it is interesting to see, how the algorithm restricts the state
space of the original CPN model, since it avoids not only the deadlock states,
but also unsafe states leading to deadlock states and also some safe states that
are however not accepted by the algorithm due to its suboptimal calculation (see
section 2.2).

Tests of the outlined algorithm with two RAS CPN models always showed
that it avoids all deadlock states as expected. In the illustrative example, the
CPN model of the RAS without the BA contains 12 deadlock states, while the
CPN model with the BA contains no deadlock states. As for restriction of their
state space, the occurrence graph of the original model has 152 nodes and 378
arcs, while the BA-controlled model has only 113 nodes and 260 arcs.

4 Conclusion

In this paper, we focused on an implementation of the banker’s algorithm (BA)
for deadlock avoidance in a resource allocation system (RAS) with non-sequential
processes with flexible routing and a use of resources of multiple types at once,
all modelled as a coloured Petri net in the environment of the CPN Tools. The
original version of the BA has been slightly modified in the direction of its appli-
cation for the outlined system, requiring the introduction of vectors of relative

16

changes necessary for processes combining all three outlined properties: concur-
rent processing, flexible routing and use of multiple resources of multiple types
at once.

The algorithm has been verified to be effective on such a system. This result
we consider as the major contribution of this work, since the application of the
banker-like algorithms to such a class of RAS has not been apparently discussed
in the literature so far.

Selection of the CPN Tools environment was mainly motivated by the abilities
of the fast construction of the underlying RAS model in the CPN and of the
available analysis of occurrence graphs on the presence of deadlock states. Both
proved to be beneficial. Especially the analysis ability is a very strong tool – it
enables to further study behaviour of the BA and its versions on a toy example
via detailed analysis of its state space.

However, the implementation of the basic version of the BA in 12 CPN ML
functions looks rather complicated compared to sequential programming. Also
maintaining information about the global state of a RAS modelled in CPN is
rather complicated – it is concentrated to one place, which is connected to many
transitions, where allocation requests occur. This makes the CPN more difficult
to read, especially for large RAS models. Solution to this is using hierarchy for
the CPN: dividing process subnet(s) in RAS to CPN subpages, each of them
containing only a few transitions. In the illustrative example in the paper, the
process subnet could be split e.g. to three subpages. However, in order to show
the whole approach, the hierarchy was not used for the model in this paper.

Further issues are connected to the use of the outlined results in the field,
where the motivation comes from – for deadlock avoidance in computer simula-
tion of complex transportation systems.

First, the complex models produce very large state spaces that cannot be
fully verified in a reasonable time like the presented simple example. We believe
that once the BA has been verified on a small scale example preserving the
outlined properties of the complex transportation system, it will be effective
also on complex models with tens of process types and process instances and
hundreds of resource types as well as resource units. The research will be rather
focused on making the run of the BA more effective for the large system.

Secondly, the BA needs to be adjusted to a more complicated way of alloca-
tion and release of resources that is currently present in the original simulation
models. The first version of the BA with this property has been already made [1],
however, it requires further research and testing.

Thirdly, apart from the BA’s basic version, we have implemented two more
versions of the BA according to [5] – for partially-ordered and V1-ordered states
in the CPN Tools [1]. Their explanation requires however more space and is
thus outside of scope of this paper. The open question here is, if implementation
of other versions, for Vn-ordered states (according to the mentioned paper) is
effective and beneficial in our application field.

All the briefly outlined issues frame our future work in this context.

17

Acknowledgements. This paper has been supported by the grant of the Sci-
entific Grant Agency VEGA 1/4057/07 in the Slovak Republic and the research
project MŠM 0021627505 – Theory of transport systems in the Czech Republic.

References

1. Žarnay, M.: Systém na podporu rozhodovania pre riadenie dopravných procesov
[Decision-support system for transportation systems control]. PhD thesis, Faculty
of Management Science and Informatics, University of Žilina (January 2007) in
Slovak.

2. Žarnay, M.: Solving deadlock states in model of railway station operation using
coloured petri nets. In Tarnai, G., Schnieder, E., eds.: Formal Methods for Au-
tomation and Safety in Railway and Automotive Systems. (2008) to appear

3. Peterson, J.L.: Operating System Concepts. Addison-Wesley (1981)

4. Dijkstra, E.W.: Co-operating sequential processes. In Genuys, F., ed.: Program-
ming Languages, New York, Academic Press (1968) 43112 Reprinted from: Techni-
cal Report EWD-123, Technological University, Eindhoven, the Netherlands, 1965.

5. Lawley, M.A., Reveliotis, S.A., Ferreira, P.M.: The application and evaluation of
banker’s algorithm for deadlock-free buffer space allocation in flexible manufactur-
ing systems. International Journal of Flexible Manufacturing Systems 10 (1998)
73–100

6. Tricas, F., Colom, J.M., Ezpeleta, J.: Some improvements to the banker’s algorithm
based on the process structure. Proceedings of IEEE International Conference on
Robotics and Automation 3 (2000) 2853–2858 San Francisco, CA, USA.

7. Tricas, F.: Deadlock Analysis, Prevention and Avoidance in Sequential Resource
Allocation Systems. PhD thesis, Departamento de Informática e Ingenieŕıa de
Sistemas, Universidad de Zaragoza (May 2003)

8. Ezpeleta, J., Tricas, F., Garćıa-Vallés, F., Colom, J.M.: A banker’s solution for
deadlock avoidance in fms with flexible routing and multiresource states. IEEE
Transactions on Robotics and Automation 18(4) (August 2002) 621–625

9. Lang, S.D.: An extended banker’s algorithm for deadlock avoidance. IEEE Trans-
actions on software engineering 25(3) (1999) 428–432

10. Reveliotis, S.A.: Conflict resolution in agv systems. IIE Transactions 32(7) (2000)
647–659

11. Ezpeleta, J., Valk, R.: A polynomial deadlock avoidance method for a class of
nonsequential resource allocation systems. IEEE Transactions on Systems, Man
and Cybernetics, Part A 36(6) (2006) 1234–1243

Appendix

A complete listing of colour sets, variables, constant values and functions used for
the implementation of the BA in the CPN ML is available here. It complements
the description of the BA implementation in the CPN ML in the section 3.1
Concrete values are related to the presented illustrative CPN model.

18

Data Structures

colset cProcessID = INT;
colset cResources = with R1 | R2 | R3;
colset cResNumbersList = list INT;
colset cProcessList = list cProcessID;
colset cResources4Process = product cProcessID * cResNumbersList;
colset cAllProcessesWRes = list cResources4Process;
colset cBankerAlgData = product cAllProcessesWRes *

cAllProcessesWRes * cResNumbersList;

var proc: cProcessID;
var BAData, BADataAmended: cBankerAlgData;

val vInitMaxNeedPrimary = [2,3,1]
val vMaxNeedPrimarySecondaryDiff = [~1,0,1];
val vByteDiv = 16;
val vInitBAData =
([(1,[0,0,0]), (2,[0,0,0])],
[(1,vInitMaxNeedPrimary), (2,vInitMaxNeedPrimary)],
[3,3,3]);

val vChangeT1 = [1,0,1];
val vChangeT2 = [1,1,0];
val vChangeT3 = [0,1,1];
val vChangeT4 = [0,1,~1];
val vChangeT5 = [0,1,0];
val vChangeT6 = [~16,1,~16];
val vChangeT7 = [0,~16,1];
val vChangeT8 = [~32,0,0];
val vChangeT9 = [0,~32,~16];

General Functions

fun ModifyList (pA, _, []) = pA
| ModifyList ([], _, pB) = pB
| ModifyList (pA, pOper, pB) =

(hd pA + pOper * hd pB) :: ModifyList (tl pA, pOper, tl pB);

fun IsIn ([],[]) = true
| IsIn ([], _) = false
| IsIn (_, []) = false
| IsIn (pA, pB) =

if hd pA <= hd pB andalso IsIn (tl pA, tl pB)
then true else false;

19

fun ULBits ([]) = []
| ULBits (pList) =

if hd pList < 0 then
~(~(hd pList) div vByteDiv + ~(hd pList) mod vByteDiv) ::
ULBits (tl pList)

else ((hd pList) div vByteDiv + (hd pList) mod vByteDiv) ::
ULBits (tl pList);

fun LowerBits ([]) = []
| LowerBits (pList) =

if hd pList < 0 then
~(~(hd pList) mod vByteDiv) :: LowerBits (tl pList)

else ((hd pList) mod vByteDiv) :: LowerBits (tl pList);

Data Structure Manipulation Functions

fun LocateListInPRL ([], _) = []
| LocateListInPRL (pPRL: cAllProcessesWRes, pKey) =

if #1 (hd pPRL) = pKey then #2 (hd pPRL)
else LocateListInPRL (tl pPRL, pKey);

fun ModifyPRL_List ([], _, _) = []
| ModifyPRL_List (pPRLList: cAllProcessesWRes,
pOper, pPRLItem: cResources4Process) =

if #1 (hd pPRLList) <> #1 (pPRLItem)
then (hd pPRLList) ::

ModifyPRL_List (tl pPRLList, pOper, pPRLItem)
else (#1 (hd pPRLList), ModifyList (#2 (hd pPRLList),
pOper, #2 pPRLItem)) :: (tl pPRLList);

fun RemoveItemFromPRL_List ([], _) = []
| RemoveItemFromPRL_List (pPRL_List: cAllProcessesWRes, pKey) =

if #1 (hd pPRL_List) = pKey then tl pPRL_List
else hd pPRL_List ::
RemoveItemFromPRL_List (tl pPRL_List, pKey);

fun ChangeMaxNeed (pChange, pBAData: cBankerAlgData) =
(#1 pBAData,
ModifyPRL_List (#2 pBAData, 1, pChange),
#3 pBAData);

fun ModifyBAData (pChange: cResources4Process,
pBAData: cBankerAlgData): cBankerAlgData =
(

ModifyPRL_List (#1 pBAData, 1,
(#1 pChange, ULBits(#2 pChange))),

20

ModifyPRL_List (#2 pBAData, ~1,
(#1 pChange, LowerBits(#2 pChange))),

ModifyList (#3 pBAData, ~1, ULBits(#2 pChange))
);

Main Algorithm Functions

fun FindAllowedProcess ([], _): cProcessID = ~1
| FindAllowedProcess (pRemainNeed: cAllProcessesWRes,
pAvail: cResNumbersList): cProcessID =

if IsIn (#2 (hd pRemainNeed), pAvail) then #1 (hd pRemainNeed)
else FindAllowedProcess (tl pRemainNeed, pAvail);

fun IsStateOrdered (_, [], _) = [~2] (* recursion at the bottom *)
| IsStateOrdered (Alloc, RemainNeed: cAllProcessesWRes,

Avail: cResNumbersList): cProcessList =
let
(* looking for a process that can be chosen to the order *)
val proc = FindAllowedProcess (RemainNeed, Avail)

in
(* if unsuccessful, state is not ordered and return [~1] *)
if proc = ~1 then [~1]
else

(* if process found, continue to the next round *)
let val result = IsStateOrdered

(RemoveItemFromPRL_List (Alloc, proc),
RemoveItemFromPRL_List (RemainNeed, proc),
ModifyList (LocateListInPRL (Alloc, proc), 1, Avail))

in
case result of (* of previous round of recursion *)
[~1] => [~1] (* was unsuccessful, pass it further *)

| [~2] => [proc] (* returned from end of recursion,
start to build up the ordered process sequence *)

| _ => proc :: result (* was successful:
building up the process sequence *)

end
end;

fun CanItBeAllocated (pRequest: cResources4Process,
pBAData: cBankerAlgData): BOOL =

if IsStateOrdered (ModifyBAData (pRequest, pBAData)) = [~1]
then false
else true;

