Contents

1 Using the Mosel language ... 1
 Introduction ... 2
 Why you need Mosel .. 2
 What you need to know before using Mosel 2
 Symbols and conventions ... 3
 The structure of this guide 4

1 Getting started with Mosel .. 5
 1.1 Entering a model ... 5
 1.2 The chess set problem: description 5
 1.2.1 A first formulation 5
 1.3 Solving the chess set problem 6
 1.3.1 Building the model 6
 1.3.2 Obtaining a solution using Mosel 7
 1.3.3 Running Mosel from a command line 8
 1.3.4 Using Xpress-IVE .. 9

2 Some illustrative examples .. 10
 2.1 The burglar problem ... 10
 2.1.1 Model formulation 10
 2.1.2 Implementation ... 10
 2.1.3 The burglar problem revisited 13
 2.2 A blending example .. 14
 2.2.1 The model background 14
 2.2.2 Model formulation 14
 2.2.3 Implementation ... 15
 2.2.4 Re-running the model with new data 16
 2.2.5 Reading data from spreadsheets and databases 17
 2.2.5.1 Spreadsheet example 17
 2.2.5.2 Database example 18

3 More advanced modeling features 19
 3.1 Overview ... 19
 3.2 A transport example .. 19
 3.2.1 Model formulation 19
 3.2.2 Implementation ... 20
 3.3 Conditional generation — the | operator 21
 3.3.1 Conditional variable creation and create 22
 3.4 Reading sparse data ... 23
 3.4.1 Data input with initializations from 23
 3.4.2 Data input with readln 24
 3.4.3 Data input with diskdata 24

4 Integer Programming .. 26
 4.1 Integer Programming entities in Mosel 26
 4.2 A project planning model 28
4.2.1 Model formulation ... 28
4.2.2 Implementation ... 29
4.3 The project planning model using Special Ordered Sets 30

5 Overview of subroutines and reserved words 31
5.1 Modules ... 31
5.2 Reserved words ... 32

6 Correcting syntax errors in Mosel 34

II Advanced language features 36

Overview .. 37

7 Flow control constructs .. 38
7.1 Selections ... 38
7.2 Loops ... 39
7.2.1 forall ... 40
 7.2.1.1 Multiple indices ... 40
 7.2.1.2 Conditional looping 41
7.2.2 while ... 41
7.2.3 repeat until ... 42

8 Sets .. 43
8.1 Initializing sets .. 43
8.1.1 Constant sets .. 43
8.1.2 Set initialization from file, finalized and fixed sets 43
8.2 Working with sets .. 45
8.2.1 Set operators ... 46

9 Functions and procedures ... 47
9.1 Subroutine definition ... 47
9.2 Parameters ... 48
9.3 Recursion .. 49
9.4 forward .. 49
9.5 Overloading of subroutines 51

10 Output .. 53
10.1 Producing formatted output 53
10.2 File output .. 55
 10.2.1 Data input with initializations to 55
 10.2.2 Data output with writeln 55
 10.2.3 Data output with diskdata 56
10.3 Real number format ... 56

11 More about Integer Programming 58
11.1 Cut generation ... 58
11.1.1 Example problem ... 58
11.1.2 Model formulation .. 58
11.1.3 Implementation ... 59
11.1.4 Cut-and-Branch ... 61
11.1.5 Comparison tolerance 62
11.1.6 Branch-and-Cut ... 62
11.2 Column generation ... 64
 11.2.1 Example problem ... 64
 11.2.2 Model formulation .. 64
 11.2.3 Implementation .. 65
12 Extensions to Linear Programming

12.1 Recursion

<table>
<thead>
<tr>
<th>12.1.1 Example problem</th>
<th>69</th>
</tr>
</thead>
<tbody>
<tr>
<td>12.1.2 Model formulation</td>
<td>69</td>
</tr>
<tr>
<td>12.1.3 Implementation</td>
<td>70</td>
</tr>
</tbody>
</table>

12.2 Goal Programming

<table>
<thead>
<tr>
<th>12.2.1 Example problem</th>
<th>72</th>
</tr>
</thead>
<tbody>
<tr>
<td>12.2.2 Implementation</td>
<td>72</td>
</tr>
</tbody>
</table>

III Working with the Mosel libraries

<table>
<thead>
<tr>
<th>Overview</th>
<th>75</th>
</tr>
</thead>
<tbody>
<tr>
<td>13 C interface</td>
<td>77</td>
</tr>
<tr>
<td>13.1 Basic tasks</td>
<td>77</td>
</tr>
<tr>
<td>13.1.1 Compiling a model in C</td>
<td>77</td>
</tr>
<tr>
<td>13.1.2 Executing a model in C</td>
<td>77</td>
</tr>
<tr>
<td>13.2 Parameters</td>
<td>78</td>
</tr>
<tr>
<td>13.3 Accessing modeling objects and solution values</td>
<td>79</td>
</tr>
<tr>
<td>13.3.1 Accessing sets</td>
<td>79</td>
</tr>
<tr>
<td>13.3.2 Retrieving solution values</td>
<td>80</td>
</tr>
<tr>
<td>13.3.3 Sparse arrays</td>
<td>81</td>
</tr>
<tr>
<td>13.3.4 Termination</td>
<td>82</td>
</tr>
<tr>
<td>13.3.5 Problem solving in C with Xpress-Optimizer</td>
<td>82</td>
</tr>
</tbody>
</table>

14 Other programming language interfaces

<table>
<thead>
<tr>
<th>14.1 Java</th>
<th>84</th>
</tr>
</thead>
<tbody>
<tr>
<td>14.1.1 Compiling and executing a model in Java</td>
<td>84</td>
</tr>
<tr>
<td>14.1.2 Parameters</td>
<td>85</td>
</tr>
<tr>
<td>14.1.3 Accessing sets</td>
<td>85</td>
</tr>
<tr>
<td>14.1.4 Retrieving solution values</td>
<td>86</td>
</tr>
<tr>
<td>14.1.5 Sparse arrays</td>
<td>87</td>
</tr>
<tr>
<td>14.2 Visual Basic</td>
<td>87</td>
</tr>
<tr>
<td>14.2.1 Compiling and executing a model in Visual Basic</td>
<td>88</td>
</tr>
<tr>
<td>14.2.2 Parameters</td>
<td>88</td>
</tr>
<tr>
<td>14.2.3 Redirecting the VB output</td>
<td>89</td>
</tr>
</tbody>
</table>

Appendix

| 90 |
| A Good modeling practice with Mosel |
A.1 Using constants and parameters	91
A.2 Naming sets	91
A.3 Finalizing sets and dynamic arrays	92
A.4 Ordering indices	93
A.5 Use of exists	93
A.6 Structuring a model	94
A.7 Transforming subroutines into user modules	94
A.8 Debugging options, IVE	95
A.9 Algorithm choice and parameter settings	95

Index

| 96 |
I. Using the Mosel language
Introduction

Why you need Mosel

'Mosel' is not an acronym. It is pronounced like the German river, mo-zul. It is an advanced modeling and solving language and environment, where optimization problems can be specified and solved with the utmost precision and clarity.

Here are some of the features of Mosel:

- Mosel’s easy syntax is regular and described formally in the reference manual.
- Mosel supports dynamic objects, which do not require pre-sizing. For instance, you do not have to specify the maximum sizes of the indices of a variable x.
- Mosel models are pre-compiled. Mosel compiles a model into a binary file which can be run on any computer platform, and which hides the intellectual property in the model if so required.
- Mosel is embeddable. There is a runtime library which can be called from your favorite programming language if required. You can access any of the model’s objects from your programming language.
- Mosel is easily extended through the concept of modules. It is possible to write a set of functions, which together stand alone as a module. Several modules are supplied by Dash, including the Xpress-MP Optimizer.
- Support for user-written functions and procedures is provided.
- The use of sets of objects is supported.
- Constraints and variables etc. can be added incrementally. For instance, column generation can depend on the results of previous optimizations, so sub problems are supported.

The modeling component of Mosel provides you with an easy to use yet powerful language for describing your problem. It enables you to gather the problem data from text files and a range of popular spreadsheets and databases, and gives you access to a variety of solvers, which can find optimal or near-optimal solutions to your model.

What you need to know before using Mosel

Before using Mosel you should be comfortable with the use of symbols such as x or y to represent unknown quantities, and the use of this sort of variable in simple linear equations and inequalities, for example:

\[x + y \leq 6 \]

Experience of a basic course in Mathematical or Linear Programming is worthwhile, but is not essential. Similarly some familiarity with the use of computers would be helpful.
For all but the simplest models you should also be familiar with the idea of summing over a range of variables. For example, if \(\text{produce}_j \) is used to represent the number of cars produced on production line \(j \) then the total number of cars produced on all \(N \) production lines can be written as:

\[
\sum_{j=1}^{N} \text{produce}_j
\]

This says 'sum the output from each production line \(\text{produce}_j \) over all production lines \(j \) from \(j = 1 \) to \(j = N \)'.

If our target is to produce at least 1000 cars in total then we would write the inequality:

\[
\sum_{j=1}^{N} \text{produce}_j \geq 1000
\]

We often also use a set notation for the sums. Assuming that \(\text{LINES} \) is the set of production lines \(\{1, \ldots, N\} \), we may write equivalently:

\[
\sum_{j \in \text{LINES}} \text{produce}_j \geq 1000
\]

This may be read 'sum the output from each production line \(\text{produce}_j \) over all production lines \(j \) in the set \(\text{LINES} \)'.

Other common mathematical symbols that are used in the text are \(\mathbb{N} \) (the set of non-negative integer numbers \(\{0, 1, 2, \ldots\} \)), \(\cap \) and \(\cup \) (intersection and union of sets), \(\land \) and \(\lor \) (logical ‘and’ and ‘or’), the all-quantifier \(\forall \) (read ‘for all’), and \(\exists \) (read ‘exists’).

Mosel closely mimics the mathematical notation an analyst uses to describe a problem. So provided you are happy using the above mathematical notation the step to using a modeling language will be straightforward.

Symbols and conventions

We have used the following conventions within this guide:

- Mathematical objects are presented in italics.
- Examples of commands, models and their output are printed in a Courier font. File-names are given in lower case Courier.
- Decision variables have lower case names; in the most example problems these are verbs (such as use, take).
- Constraint names start with an upper case letter, followed by mostly lower case (e.g. Profit, TotalCost).
- Data (arrays and sets) and constants are written entirely with upper case (e.g. DEMAND, COST, ITEMS).
- The vertical bar symbol | is found on many keyboards as a vertical line with a small gap in the middle, but often confusingly displays on-screen without the small gap. In the UNIX world it is referred to as the pipe symbol. (Note that this symbol is not the same as the character sometimes used to draw boxes on a PC screen.) In ASCII, the | symbol is 7C in hexadecimal, 124 in decimal.
The structure of this guide

This user guide is structured into these main parts

- **Part I** describes the use of Mosel for people who want to build and solve Mathematical Programming (MP) problems. These will typically be Linear Programming (LP), Mixed Integer Programming (MIP), or Quadratic Programming (QP) problems. The part has been designed to show the modeling aspects of Mosel, omitting most of the more advanced programming constructs.

- **Part II** is designed to help those users who want to use the powerful programming language facilities of Mosel, using Mosel as a modeling, solving and programming environment. Items covered include looping (with examples), more about using sets, producing nicely formatted output, functions and procedures. We also give some advanced MP examples, including Branch-and-Cut, column generation, Goal Programming and Successive Linear Programming.

- **Part III** shows how Mosel models can be embedded into large applications using programming languages like C, Java, or Visual Basic.

This user guide is deliberately informal and is not complete. It must be read in conjunction with the Mosel reference manual, where features are described precisely and completely.
Chapter 1
Getting started with Mosel

1.1 Entering a model

In this chapter we will take you through a very small manufacturing example to illustrate the basic building blocks of Mosel.

Models are entered into a Mosel file using a standard text editor (do not use a word processor as an editor as this may not produce an ASCII file). If you have access to Windows, Xpress-IVE is the model development environment to use. The Mosel file is then loaded into Mosel, and compiled. Finally, the compiled file can be run. This chapter will show the stages in action.

1.2 The chess set problem: description

To illustrate the model development and solving process we shall take a very small example. A joinery makes two different sizes of boxwood chess sets. The smaller size requires 3 hours of machining on a lathe and the larger only requires 2 hours, because it is less intricate. There are four lathes with skilled operators who each work a 40 hour week. The smaller chess set requires 1 kg of boxwood and the larger set requires 3 kg. However boxwood is scarce and only 200 kg per week can be obtained.

When sold, each of the large chess sets yields a profit of $20, and one of the small chess set has a profit of $5. The problem is to decide how many sets of each kind should be made each week to maximize profit.

1.2.1 A first formulation

Within limits, the joinery can vary the number of large and small chess sets produced: there are thus two decision variables (or simply variables) in our model, one decision variable per product. We shall give these variables abbreviated names:

small: the number of small chess sets to make
large: the number of large chess sets to make

The number of large and small chess sets we should produce to achieve the maximum contribution to profit is determined by the optimization process. In other words, we look to the optimizer to tell us the best values of small, and large.

The values which small and large can take will always be constrained by some physical or technological limits: they may be constrained to be equal to, less than or greater than some constant. In our case we note that the joinery has a maximum of 160 hours of machine time available per week. Three hours are needed to produce each small chess set and two hours are needed to produce each large set. So the number of hours of machine time actually used each
week is $3 \cdot small + 2 \cdot large$. One constraint is thus:

$$3 \cdot small + 2 \cdot large \leq 160 \text{ (lathe-hours)}$$

which restricts the allowable combinations of small and large chess sets to those that do not exceed the lathe-hours available.

In addition, only 200 kg of boxwood is available each week. Since small sets use 1 kg for every set made, against 3 kg needed to make a large set, a second constraint is:

$$1 \cdot small + 3 \cdot large \leq 200 \text{ (kg of boxwood)}$$

where the left hand side of the inequality is the amount of boxwood we are planning to use and the right hand side is the amount available.

The joinery cannot produce a negative number of chess sets, so two further non-negativity constraints are:

$$small \geq 0$$
$$large \geq 0$$

In a similar way, we can write down an expression for the total profit. Recall that for each of the large chess sets we make and sell we get a profit of $20, and one of the small chess set gives us a profit of $5. The total profit is the sum of the individual profits from making and selling the small small sets and the large large sets, i.e.

$$Profit = 5 \cdot small + 20 \cdot large$$

Profit is the objective function, a linear function which is to be optimized, that is, maximized. In this case it involves all of the decision variables but sometimes it involves just a subset of the decision variables. In maximization problems the objective function usually represents profit, turnover, output, sales, market share, employment levels or other ‘good things’. In minimization problems the objective function describes things like total costs, disruption to services due to breakdowns, or other less desirable process outcomes.

The collection of variables, constraints and objective function that we have defined are our model. It has the form of a Linear Programming problem: all constraints are linear equations or inequalities, the objective function also is a linear expression, and the variables may take any non-negative real value.

1.3 Solving the chess set problem

1.3.1 Building the model

The Chess Set problem can be solved easily using Mosel. The first stage is to get the model we have just developed into the syntax of the Mosel language. Remember that we use the notation that items in italics (for example, $small$) are the mathematical variables. The corresponding Mosel variables will be the same name in non-italic courier (for example, $small$).

We illustrate this simple example by using the command line version of Mosel. The model can be entered into a file named, perhaps, chess.mos as follows:

```mosel
model "Chess"
declarations
  small: mpvar ! Number of small chess sets to make
  large: mpvar ! Number of large chess sets to make
end-declarations
Profit:= 5*small + 20*large ! Objective function
Lathe:= 3*small + 2*large <= 160 ! Lathe-hours
Boxwood:= small + 3*large <= 200 ! kg of boxwood
end-model
```
Indentations are purely for clarity. The symbol `!` signifies the start of a comment, which continues to the end of the line. Comments over multiple lines start with `(!` and terminate with `!)`.

Notice that the character `*` is used to denote multiplication of the decision variables by the units of machine time and wood that one unit of each uses in the Lathe and Boxwood constraints.

The modeling language distinguishes between upper and lower case, so Small would be recognized as different from small.

Let’s see what this all means.

A model is enclosed in a model / end-model block.

The decision variables are declared as such in the declarations / end-declarations block. Every decision variable must be declared. LP, MIP and QP variables are of type mpvar. Several decision variables can be declared on the same line, so

```mosel
declarations
small, large: mpvar
end-declarations
```

is exactly equivalent to what we first did. By default, Mosel assumes that all mpvar variables are constrained to be non-negative unless it is informed otherwise, so there is no need to specify non-negativity constraints on variables.

Here is an example of a constraint:

```mosel
Lathe:= 3 * small + 2 * large <= 160
```

The name of the constraint is Lathe. The actual constraint then follows. If the ‘constraint’ is unconstrained (for example, it might be an objective function), then there is no <=, >= or = part.

In Mosel you enter the entire model before starting to compile and run it. Any errors will be signaled when you try to compile the model, or later when you run it (see Chapter 6 on correcting syntax errors).

1.3.2 Obtaining a solution using Mosel

So far, we have just specified a model to Mosel. Next we shall try to solve it. The first thing to do is to specify to Mosel that it is to use Xpress-Optimizer to solve the problem. Then, assuming we can solve the problem, we want to print out the optimum values of the decision variables, small and large, and the value of the objective function. The model becomes

```mosel
model "Chess 2"
uses "mmxprs"  ! We shall use Xpress-Optimizer
declarations
small, large: mpvar  ! Decision variables: produced quantities
end-declarations
Profit:= 5 * small + 20 * large  ! Objective function
Lathe:= 3 * small + 2 * large <= 160  ! Lathe-hours
Boxwood:= small + 3 * large <= 200  ! kg of boxwood
maximize(Profit)  ! Solve the problem
writeln("Make ", getsol(small), " small sets")
writeln("Make ", getsol(large), " large sets")
writeln("Best profit is ", getobjval)
end-model
```

The line
uses "mmxprs"

tells Mosel that Xpress-Optimizer will be used to solve the LP. The Mosel modules mmxprs
module provides us with such things as maximization, handling bases etc.

The line

\texttt{maximize(Profit)}

tells Mosel to maximize the objective function called \texttt{Profit}.

More complicated are the \texttt{writeln} statements, though it is actually quite easy to see what
they do. If some text is in quotation marks, then it is written literally. \texttt{getsol} and \texttt{getobjval}
are special Mosel functions that return respectively the optimal value of the argument, and
the optimal objective function value. \texttt{writeln} writes a line terminator after writing all its
arguments (to continue writing on the same line, use \texttt{write} instead). \texttt{writeln} can take many
arguments. The statement

\texttt{writeln("small: ", getsol(small), " large: ", getsol(large))}

will result in the values being printed all on one line.

\textbf{1.3.3 Running Mosel from a command line}

When you have entered the complete model into a file (let us call it \texttt{chess.mos}), we can
proceed to get the solution to our problem. Three stages are required:

1. Compiling \texttt{chess.mos} to a compiled file, \texttt{chess.bim}

2. Loading the compiled file \texttt{chess.bim}

3. Running the model we have just loaded.

We start Mosel at the command prompt, and type the following sequence of commands

\begin{verbatim}
mosel
compile chess
load chess
run
quit
\end{verbatim}

which will compile, load and run the model. We will see output something like that below,
where we have highlighted Mosel’s output in bold face.

\begin{verbatim}
mosel
** Xpress-Mosel **
(c) Copyright Dash Associates 1998-2002
>compile chess
Compiling ‘chess’...
>load chess
>run
Make 0 small sets
Make 66.6667 large sets
Best profit is 1333.33
Returned value: 0
>quit
Exiting.
\end{verbatim}

Since the compile/load/run sequence is so often used, it can be abbreviated to

\begin{verbatim}
cl chess
run
\end{verbatim}

or simply
exec chess

The same steps may be done immediately from the command line:

mosel -c "cl chess; run"

or

mosel -c "exec chess"

The -c option is followed by a list of commands enclosed in double quotes. With Mosel’s silent (-s) option

mosel -s -c "exec chess"

the only output is

Make 0 small sets
Make 66.6667 large sets
Best profit is 1333.33

1.3.4 Using Xpress-IVE

Under Microsoft Windows you may also use Xpress-IVE, sometimes called just IVE, the Xpress Interactive Visual Environment, for working with your Mosel models. Xpress-IVE is a complete modeling and optimization development environment that presents Mosel in an easy-to-use Graphical User Interface (GUI), with a built-in text editor.

To execute the model file chess.mos you need to carry out the following steps.

• Start up IVE.

• Open the model file by choosing File > Open. The model source is then displayed in the central window (the IVE Editor).

• Click the Run button (green triangle) or alternatively, choose Build > Run.

The Build pane at the bottom of the workspace is automatically displayed when compilation starts. If syntax errors are found in the model, they are displayed here, with details of the line and character position where the error was detected and a description of the problem, if available. Clicking on the error takes the user to the offending line.

When a model is run, the Output/Input pane at the right hand side of the workspace window is selected to display program output. Any output generated by the model is sent to this window. IVE will also provide graphical representations of how the solution is obtained, which are generated by default whenever a problem is optimized. The right hand window contains a number of panes for this purpose, dependent on the type of problem solved and the particular algorithm used. IVE also allows the user to draw graphs by embedding subroutines in Mosel models (see the documentation on the website for further detail).

IVE makes all information about the solution available through the Entities pane in the left hand window. By expanding the list of decision variables in this pane and hovering over one with the mouse pointer, its solution and reduced cost are displayed. Dual and slack values for constraints may also be obtained.
Chapter 2
Some illustrative examples

This chapter develops the basics of modeling set out in Chapter 1. It presents some further examples of the use of Mosel and introduces new features:

- **Use of subscripts:** Almost all models of any size have subscripted variables. We show how to define arrays of data and decision variables, introduce the different types of sets that may be used as index sets for these arrays, and also simple loops over these sets.

- **Working with data files:** Mosel provides facilities to read from and write to data files in text format and also from other data sources (databases and spreadsheets).

2.1 The burglar problem

A burglar sees 8 items, of different worths and weights. He wants to take the items of greatest total value whose total weight is not more than the maximum $WTMAX$ he can carry.

2.1.1 Model formulation

We introduce binary variables $take_i$ for all i in the set of all items ($ITEMS$) to represent the decision whether item i is taken or not. $take_i$ has the value 1 if item i is taken and 0 otherwise. Furthermore, let $VALUE_i$ be the value of item i and $WEIGHT_i$ its weight. A mathematical formulation of the problem is then given by:

$$\text{maximize} \sum_{i \in ITEMS} VALUE_i \cdot take_i$$

$$\sum_{i \in ITEMS} WEIGHT_i \cdot take_i \leq WTMAX \quad \text{(weight restriction)}$$

$$\forall i \in ITEMS : take_i \in \{0, 1\}$$

The objective function is to maximize the total value, that is, the sum of the values of all items taken. The only constraint in this problem is the weight restriction. This problem is an example of a knapsack problem.

2.1.2 Implementation

It may be implemented with Mosel as follows:

```mosel
model Burglar
uses "mmxprs"

declarations
WTMAX = 102  ! Maximum weight allowed
ITEMS = 1..8  ! Index range for items
```

Mosel User Guide
VALUE: array(ITEMS) of real ! Value of items
WEIGHT: array(ITEMS) of real ! Weight of items
take: array(ITEMS) of mpvar ! 1 if we take item i; 0 otherwise
end-declarations

! Item: 1 2 3 4 5 6 7 8
VALUE := [15, 100, 90, 60, 40, 15, 10, 1]
WEIGHT:= [2, 20, 20, 30, 40, 30, 60, 10]

! Objective: maximize total value
MaxVal:= sum(i in ITEMS) VALUE(i)*take(i)

! Weight restriction
sum(i in ITEMS) WEIGHT(i)*take(i) <= WTMAX

! All variables are 0/1
forall(i in ITEMS) take(i) is_binary
maximize(MaxVal) ! Solve the MIP-problem

! Print out the solution
writeln("Solution:
 Objective: ", getobjval)
forall(i in ITEMS) writeln(" take(", i, "): ", getsol(take(i)))
end-model

When running this model we get the following output:

Solution:
 Objective: 280
take(1): 1
take(2): 1
take(3): 1
take(4): 1
take(5): 0
take(6): 1
take(7): 0
take(8): 0

In this model there are a lot of new features, which we shall now explain.

• Constants:

 WMAX=102

 declares a constant called WMAX, and gives it the value 102. Since 102 is an integer, WMAX is an integer constant. Anything that is given a value in a declarations block is a constant.

• Ranges:

 ITEMS = 1..8

 defines a range set, that is, a set of consecutive integers from 1 to 8. This range is used as an index set for the data arrays (VALUE and WEIGHT) and for the array of decision variables take.

• Arrays:

 VALUE: array(ITEMS) of real

 defines a one-dimensional array of real values indexed by the range ITEMS. Exactly equivalent would be

 VALUE: array(1..8) of real ! Value of items

 Multi-dimensional arrays are declared in the obvious way e.g.
VAL3: array(ITEMS, 1..20, ITEMS) of real

declares a 3-dimensional real array. Arrays of decision variables (type mpvar) are declared
likewise, as shown in our example:

\[x: \text{array(ITEMS)} \text{ of mpvar} \]

declares an array of decision variables \(\text{take(1)}, \text{take(2)}, \ldots, \text{take(8)} \).

All objects (scalars and arrays) declared in Mosel are always initialized with a default
value:

- real, integer: 0
- boolean: false
- string: ‘’ (i.e. the empty string)

In Mosel, reals are double precision.

- Assigning values to arrays:

The values of data arrays may either be assigned in the model as we show in the example
or initialized from file (see Section 2.2).

\[\text{VALUE} := [15, 100, 90, 60, 40, 15, 10, 1] \]

cfills the \text{VALUE} array as follows:

\[\text{VALUE}(1) \] gets the value 15; \[\text{VALUE}(2) \] gets the value 100; \ldots, \[\text{VALUE}(8) \] gets the value 1.

For a 2-dimensional array such as

\[\text{declarations} \]
\[\text{EE: array(1..2, 1..3)} \text{ of real} \]
\[\text{end-declarations} \]

we might write

\[\text{EE} := [11, 12, 13, 21, 22, 23] \]

which of course is the same as

\[\text{EE} := [11, 12, 13, 21, 22, 23] \]

but much more intuitive. Mosel places the values in the tuple into \text{EE} ‘going across the
rows’, with the last subscript varying most rapidly. For higher dimensions, the principle is
the same.

- Summations:

\[\text{MaxVal := sum(i in Items) VALUE(i)*x(i)} \]

defines a linear expression called MaxVal as the sum

\[\sum_{i \in \text{Items}} \text{VALUE}_i \cdot x_i \]

- Naming constraints:

Optionally, constraints may be named (as in the chess set example). In the remainder of
this manual, we shall name constraints only if we need to refer to them at other places in
the model. In most examples, only the objective function is named (here MaxVal) — to
be able to refer to it in the call to the optimization (here maximize(MaxVal)).

- Simple Looping:

\[\text{forall(i in ITEMS) take(i) is_binary} \]
illustrates looping over all values in an index range. Recall that the index range ITEMS is 1, ..., 8, so the statement says that take(1), take(2), ..., take(8) are all binary variables. There is another example of the use of forall at the penultimate line of the model when writing out all the solution values.

- **Integer Programming variable types:**
 To make an mpvar variable, say variable xbinvar, into a binary (0/1) variable, we just have to say
  ```
  xbinvar is_binary
  ```
 To make an mpvar variable an integer variable, i.e. one that can only take on integral values in a MIP problem, we would have
  ```
  xintvar is_integer
  ```

2.1.3 The burglar problem revisited

Consider this model:

```mosel
model Burglar2
uses "mmxprs"</p>
declarations
WTMAX = 102 ! Maximum weight allowed
ITEMS = {"camera", "necklace", "vase", "picture", "tv", "video", "chest", "brick"} ! Index set for items
VALUE: array(ITEMS) of real ! Value of items
WEIGHT: array(ITEMS) of real ! Weight of items
take: array(ITEMS) of mpvar ! 1 if we take item i; 0 otherwise
end-declarations
!
VALUE := [15, 100, 90, 60, 40, 15, 10, 1]
WEIGHT:= [ 2, 20, 20, 30, 40, 30, 60, 10]
!
MaxVal:= sum(i in ITEMS) VALUE(i) * take(i)
!
sum(i in ITEMS) WEIGHT(i) * take(i) <= WTMAX
!
forall(i in ITEMS) take(i) is_binary
<mip>
maximize(MaxVal) ! Solve the MIP-problem
!</mip>
writeln("Solution:")
forall(i in ITEMS) writeln(" take(", i, ")")
end-model
```

What have we changed? The answer is, ‘not very much’.

- **String indices:**
  ```
  ITEMS{"camera", "necklace", "vase", "picture", "tv", "video", "chest", "brick"}
  ```
 declares that this time ITEMS is a set of strings. The indices now take the string values ‘camera’, ‘necklace’ etc.

If we run the model, we get
Solution:
Objective: 280
x(camera): 1
x(necklace): 1
x(vase): 1
x(picture): 1
x(tv): 0
x(video): 1
x(chest): 0
x(brick): 0

• Continuation lines:
Notice that the statement

ITEMS={"camera", "necklace", "vase", "picture", "tv", "video", "chest", "brick"}

was spread over two lines. Mosel is smart enough to recognize that the statement is not complete, so it automatically tries to continue on the next line. If you wish to extend a single statement to another line, just cut it after a symbol that implies a continuation, like an operator (+, -, <=, ...) or a comma (,) in order to warn the analyzer that the expression continues in the following line(s). For example

ObjMax:= sum(i in Irange, j in Jrange) TAB(i,j) * x(i,j) +
sum(i in Irange) TIB(i) * delta(i) +
sum(j in Jrange) TUB(j) * phi(j)

Conversely, it is possible to place several statements on a single line, separating them by semicolons (like x1 <= 4; x2 >= 7).

2.2 A blending example

2.2.1 The model background

A mining company has two types of ore available: Ore 1 and Ore 2. The ores can be mixed in varying proportions to produce a final product of varying quality. For the product we are interested in, the ‘grade’ (a measure of quality) of the final product must lie between the specified limits of 4 and 5. It sells for REV = £125 per ton. The costs of the two ores vary, as do their availabilities. The objective is to maximize the total net profit.

2.2.2 Model formulation

Denote the amounts of the ores to be used by use_1 and use_2. Maximizing net profit (i.e., sales revenue less cost COST_o of raw material) gives us the objective function:

$$\sum_{o \in ORES} (REV - COST_o) \cdot use_o$$

We then have to ensure that the grade of the final ore is within certain limits. Assuming the grades of the ores combine linearly, the grade of the final product is:

$$\frac{\sum_{o \in ORES} GRADE_o \cdot use_o}{\sum_{o \in ORES} use_o}$$

This must be greater than or equal to 4 so, cross-multiplying and collecting terms, we have the constraint:

$$\sum_{o \in ORES} (GRADE_o - 4) \cdot use_o \geq 0$$
Similarly the grade must not exceed 5.

\[
\frac{\sum_{o \in \text{ORES}} \text{GRADE}_o \cdot \text{use}_o}{\sum_{o \in \text{ORES}} \text{use}_o} \leq 5
\]

So we have the further constraint:

\[
\sum_{o \in \text{ORES}} (5 - \text{GRADE}_o) \cdot \text{use}_o \geq 0
\]

Finally only non-negative quantities of ores can be used and there is a limit to the availability \(\text{AVAIL}_o\) of each of the ores. We model this with the constraints:

\[
\forall o \in \text{ORES} : 0 \leq \text{use}_o \leq \text{AVAIL}_o
\]

2.2.3 Implementation

The above problem description sets out the relationships which exist between variables but contains few explicit numbers. Focusing on relationships rather than figures makes the model much more flexible. In this example only the selling price \(\text{REV}\) and the upper/lower limits on the grade of the final product (\(\text{MINGRADE}\) and \(\text{MAXGRADE}\)) are fixed.

Enter the following model into a file `blend.mos`.

```mos
model "Blend"
uses "mmxprs"
declarations
REV = 125 ! Unit revenue of product
MINGRADE = 4 ! Minimum permitted grade of product
MAXGRADE = 5 ! Maximum permitted grade of product
ORES = 1..2 ! Range of ores
COST: array(ORES) of real ! Unit cost of ores
AVAIL: array(ORES) of real ! Availability of ores
GRADE: array(ORES) of real ! Grade of ores (measured per unit of mass)
use: array(ORES) of mpvar ! Quantities of ores used
end-declarations

data ! Read data from file blend.dat
initializations from 'blend.dat'
  COST
  AVAIL
  GRADE
end-initializations

! Objective: maximize total profit
Profit:= sum(o in ORES) (REV-COST(o)) * use(o)

! Lower and upper bounds on ore quality
sum(o in ORES) (GRADE(o)-MINGRADE)*use(o) >= 0
sum(o in ORES) (MAXGRADE-GRADE(o))*use(o) >= 0

! Set upper bounds on variables (lower bound 0 is implicit)
forall(o in ORES) use(o) <= AVAIL(o)

maximize(Profit) ! Solve the LP-problem

! Print out the solution
writeln("Solution:
 Objective: ", getobjval)
forall(o in ORES) writeln(" use(" + o + ": ", getsol(use(o)))
end-model
```

The file `blend.dat` contains the following:

```mos
! Data file for 'blend.mos'
```
The *initializations* from/end-initializations block is new here, telling Mosel where to get data from to initialize named arrays. The order of the data items in the file does not have to be the same as that in the initializations block; equally acceptable would have been the statements

```
initializations from 'blend.dat'
    AVAIL GRADE COST
end-initializations
```

Alternatively, since all data arrays have the same indices, they may be given in the form of a single record, such as `BLENDDATA` in the following data file `blendb.dat`:

```
! [COST AVAIL GRADE]
BLENDDATA: [ [85 60 2.1] [93 45 6.3] ]
```

In the *initializations* block we need to indicate the label of the data record and in which order the data of the three arrays is given:

```
initializations from 'blendb.dat'
    [COST,AVAIL,GRADE] as 'BLENDDATA'
end-initializations
```

2.2.4 Re-running the model with new data

There is a problem with the model we have just presented — the name of the file containing the costs date is hard-wired into the model. If we wanted to use a different file, say `blend2.dat`, then we would have to edit the model, and recompile it.

Mosel has *parameters* to help with this situation. A model parameter is a symbol, the value of which can be set just before running the model, often as an argument of the `run` command of the command line interpreter.

```mosel
model "Blend 2"
uses "mmxprs"
parameters
    DATAFILE="blend.dat"
end-parameters
declarations
    REV = 125 ! Unit revenue of product
    MINGRADE = 4 ! Minimum permitted grade of product
    MAXGRADE = 5 ! Maximum permitted grade of product
    ORES = 1..2 ! Range of ores
    COST: array(ORES) of real ! Unit cost of ores
    AVAIL: array(ORES) of real ! Availability of ores
    GRADE: array(ORES) of real ! Grade of ores (measured per unit of mass)
    use: array(ORES) of mpvar ! Quantities of ores used
end-declarations
!
initializations from DATAFILE
    COST
    AVAIL
    GRADE
end-initializations
...
The parameter DATAFILE is recognized as a string, and its default value is specified. If we have previously compiled the model into say blend2.bim, then the command

mosel -c "load blend2; run 'DATAFILE="blend2.dat"'"

will read the cost data from the file we want. Or to compile, load, and run the model using a single command:

mosel -c "exec blend2 'DATAFILE="blend2.dat"'"

Notice that a model only takes a single parameters block that must follow immediately after the uses statement(s) at the beginning of the model.

2.2.5 Reading data from spreadsheets and databases

It is quite easy to create and maintain data tables in text files but in many industrial applications data are provided in the form of spreadsheets or need to be extracted from databases. So there is a facility in Mosel whereby the contents of ranges within spreadsheets may be read into data tables and databases may be accessed. It requires an additional authorization in your Xpress-MP license.

On the Dash website, separate documentation is provided for the SQL/ODBC interface (Mosel module mmodbc) and the whitepaper Generalized file handling in Mosel contains several examples of the use of ODBC. To give you a flavor of how Mosel’s ODBC interface may be used, we now read the data of the blending problem from a spreadsheet and then later from a database.

2.2.5.1 Spreadsheet example

Let us suppose that in a Microsoft Excel spreadsheet called blend.xls you have inserted the following into the cells indicated:

<table>
<thead>
<tr>
<th></th>
<th>A</th>
<th>B</th>
<th>C</th>
<th>D</th>
<th>E</th>
<th>F</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>ORES</td>
<td>COST</td>
<td>AVAIL</td>
<td>GRADE</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>1</td>
<td>85</td>
<td>60</td>
<td>2.1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>2</td>
<td>93</td>
<td>45</td>
<td>6.3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

and called the range B2:E4 MyRange.

In Windows you need to set up a User Data Source called Excel Files in the ODBC Data Source Administrator (Windows 2000 or XP: Start ≫ Settings ≫ Control Panel ≫ Administrative Tools ≫ Data Sources (ODBC)), by clicking Add and selecting Microsoft Excel Driver (*.xls).

The following model reads the data for the arrays COST, AVAIL, and GRADE from the Excel range MyRange. Note that we have added "mmodbc" to the uses statement to indicate that we are using the Mosel SQL/ODBC module.

```mosel
model "Blend 3"
uses "mmodbc", "mmxprs"

declarations
REV = 125 ! Unit revenue of product
MINGRADE = 4 ! Minimum permitted grade of product
MAXGRADE = 5 ! Maximum permitted grade of product
ORES = 1..2 ! Range of ores

COST: array(ORES) of real ! Unit cost of ores
AVAIL: array(ORES) of real ! Availability of ores
```

Some illustrative examples 17 Mosel User Guide
Instead of using the `initializations` block that automatically generates SQL commands for reading and writing data, it is also possible to employ SQL statements in Mosel models. The `initializations` block above is equivalent to the following sequence of SQL statements:

```
SQLconnect('DSN=Excel Files; DBQ=blend.xls')
SQLexecute("select * from MyRange ", [COST, AVAIL, GRADE])
SQLdisconnect
```

The SQL statement "select * from MyRange" says ‘select everything from the range called MyRange’. By using SQL statements directly in the Mosel model, it is possible to have much more complex selection statements than the ones we have used.

### 2.2.5.2 Database example

If we use Microsoft Access, we might have set up an ODBC DSN called MSAccess, and suppose we are extracting data from a table called MyTable in the database `blend.mdb`. There are just the four columns `ORES`, columns `COST`, `AVAIL`, and `GRADE` in MyTable, and the data are the same as in the Excel example above. We modify the example above to be

```mosel
model "Blend 4"
 uses "mmodbc", "mmxprs"

declarations
 REV = 125 ! Unit revenue of product
 MINGRADE = 4 ! Minimum permitted grade of product
 MAXGRADE = 5 ! Maximum permitted grade of product
 ORES = 1..2 ! Range of ores
 COST: array(ORES) of real ! Unit cost of ores
 AVAIL: array(ORES) of real ! Availability of ores
 GRADE: array(ORES) of real ! Grade of ores (measured per unit of mass)
 use: array(ORES) of mpvar ! Quantities of ores used

end-declarations

! Read data from database blend.mdb
initializations from "mmodbc.odbc:blend.mdb"
 [COST, AVAIL, GRADE] as "MyTable"
end-initializations

...

end-model
```

To use other databases, for instance a `mysql` database (let us call it `blend`), we merely need to modify the connection string — provided that we have given the same names to the data table and its columns:

```
initializations from "mmodbc.odbc:DSN=mysql;DB=blend"
```

ODBC, just like Mosel’s text file format, may also be used to output data. The reader is referred to the ODBC/SQL documentation for more detail.
Chapter 3
More advanced modeling features

3.1 Overview

This chapter introduces some more advanced features of the modeling language in Mosel. We shall not attempt to cover all its features or give the detailed specification of their formats. These are covered in greater depth in the Mosel Reference Manual.

Almost all large scale LP and MIP problems have a property known as sparsity, that is, each variable appears with a non-zero coefficient in a very small fraction of the total set of constraints. Often this property is reflected in the data tables used in the model in that many values of the tables are zero. When this happens, it is more convenient to provide just the non-zero values of the data table rather than listing all the values, the majority of which are zero. This is also the easiest way to input data into data tables with more than two dimensions. An added advantage is that less memory is used by Mosel.

The main areas covered in this chapter are related to this property:

- dynamic arrays
- sparse data
- conditional generation
- displaying data

We start again with an example problem. The following sections deal with the different topics in more detail.

3.2 A transport example

A company produces the same product at different plants in the UK. Every plant has a different production cost per unit and a limited total capacity. The customers (grouped into customer regions) may receive the product from different production locations. The transport cost is proportional to the distance between plants and customers, and the capacity on every delivery route is limited. The objective is to minimize the total cost, whilst satisfying the demands of all customers.

3.2.1 Model formulation

Let PLANT be the set of plants and REGION the set of customer regions. We define decision variables flow_{pr} for the quantity transported from plant p to customer region r. The total cost of the amount of product p delivered to region r is given as the sum of the transport cost (the distance between p and r multiplied by a factor FUELCOST) and the production cost at plant p:

\[ \text{minimize} \sum_{p \in \text{PLANT}} \sum_{r \in \text{REGION}} (\text{FUELCOST} \cdot \text{DISTANCE}_{pr} + \text{PLANTCOST}_p) \cdot \text{flow}_{pr} \]
The limits on plant capacity are given through the constraints
\[ \forall p \in \text{PLANT} : \sum_{r \in \text{REGION}} \text{flow}_{pr} \leq \text{PLANTCAP}_p \]

We want to meet all customer demands:
\[ \forall r \in \text{REGION} : \sum_{p \in \text{PLANT}} \text{flow}_{pr} = \text{DEMAND}_r \]

The transport capacities on all routes are limited and there are no negative flows:
\[ \forall p \in \text{PLANT}, r \in \text{REGION} : 0 \leq \text{flow}_{pr} \leq \text{TRANSCAP}_{pr} \]

For simplicity’s sake, in this mathematical model we assume that all routes \( p \rightarrow r \) are defined and that we have \( \text{TRANSCAP}_{pr} = 0 \) to indicate that a route cannot be used.

### 3.2.2 Implementation

This problem may be implemented with Mosel as shown in the following:

```mosel
model Transport
uses "mmxprs"

declarations
REGION: set of string ! Set of customer regions
PLANT: set of string ! Set of plants
DEMAND: array(REGION) of real ! Demand at regions
PLANTCAP: array(PLANT) of real ! Production capacity at plants
PLANTCOST: array(PLANT) of real ! Unit production cost at plants
TRANSCAP: array(PLANT,REGION) of real ! Capacity on each route plant->region
DISTANCE: array(PLANT,REGION) of real ! Distance of each route plant->region
FUELCOST: real ! Fuel cost per unit distance
flow: array(PLANT,REGION) of mpvar ! Flow on each route
end-declarations

initializations from 'transprt.dat'
DEMAND [PLANTCAP,PLANTCOST] as 'PLANTDATA'
[DISTANCE,TRANSCAP] as 'ROUTES'
FUELCOST
end-initializations

! Create the flow variables that exist
forall(p in PLANT, r in REGION | exists(TRANSCAP(p,r))) create(flow(p,r))

! Objective: minimize total cost
MinCost:= sum(p in PLANT, r in REGION | exists(flow(p,r)))
 (FUELCOST * DISTANCE(p,r) + PLANTCOST(p)) * flow(p,r)

! Limits on plant capacity
forall(p in PLANT) sum(r in REGION) flow(p,r) <= PLANTCAP(p)

! Satisfy all demands
forall(r in REGION) sum(p in PLANT) flow(p,r) = DEMAND(r)

! Bounds on flows
forall(p in PLANT, r in REGION | exists(flow(p,r)))
 flow(p,r) <= TRANSCAP(p,r)
minimize(MinCost)
! Solve the problem
end-model
```

REGION and PLANT are declared to be sets of strings, as yet of unknown size. The data arrays (DEMAND, PLANTCAP, PLANTCOST, TRANSCAP, and DISTANCE) and the array of variables flow
are indexed by members of \(\text{REGION}\) and \(\text{PLANT}\), their size is therefore not known at their declaration: they are created as dynamic arrays. There is a slight difference between dynamic arrays of data and of decision variables (type \text{mpvar}\): an entry of a data array is created automatically when it is used in the Mosel program, entries of decision variable arrays need to be created explicitly (see Section 3.3.1 below).

The data file \text{transprt.dat} contains the problem specific data. It might have, for instance,

\begin{verbatim}
DEMAND: [ (Scotland) 2840 (North) 2800 (SWest) 2600 (SEast) 2820 (Midlands) 2750]

! [CAP COST]
PLANTDATA: [ (Corby) [3000 1700]
(Deeside) [2700 1600]
(Glasgow) [4500 2000]
(Oxford) [4000 2100] ]

! [DIST CAP]
ROUTES: [ (Corby North) [400 1000]
(Corby SWest) [400 1000]
(Corby SEast) [300 2000]
(Corby Midlands) [100 2000]
(Deeside Scotland) [500 1000]
(Deeside North) [200 2000]
(Deeside SWest) [200 1000]
(Deeside SEast) [200 1000]
(Deeside Midlands) [400 300]
(Glasgow Scotland) [200 1000]
(Glasgow North) [400 2000]
(Glasgow SWest) [500 1000]
(Glasgow SEast) [900 200]
(Oxford Scotland) [800 *]
(Oxford North) [600 2000]
(Oxford SWest) [300 2000]
(Oxford SEast) [200 2000]
(Oxford Midlands) [400 500] ]

FUELCOST: 17
\end{verbatim}

where we give the \text{ROUTES} data only for possible plant/region routes, indexed by the plant and region. It is possible that some data are not specified; for instance, there is no Corby – Scotland route. So the data are sparse and we just create the flow variables for the routes that exist. (The ‘*’ for the (Oxford,Scotland) entry in the capacity column indicates that the entry does not exist; we may write ‘0’ instead: in this case the corresponding flow variable will be created but bounded to be 0 by the transport capacity limit).

The condition whether an entry in a data table is defined is tested with the Mosel function \text{exists}. With the help of the '|' operator we add this test to the \text{forall} loop creating the variables. It is not required to add this test to the sums over these variables: only the \text{flow}_{pr} variables that have been created are taken into account. However, if the sums involve exactly the index sets that have been used in the declaration of the variables (here this is the case for the objective function \text{MinCost}), adding the existence test helps to speed up the enumeration of the existing index-tuples. The following section introduces the conditional generation in a more systematic way.

### 3.3 Conditional generation — the | operator

Suppose we wish to apply an upper bound to some but not all members of a set of variables \(x_i\). There are \(\text{MAXI}\) members of the set. The upper bound to be applied to \(x_i\) is \(U_i\), but it is only to be applied if the entry in the data table \(\text{TAB}_i\) is greater than 20. If the bound did not depend on the value in \(\text{TAB}_i\) then the statement would read:

\begin{verbatim}
forall(i in 1..\text{MAXI}) x(i) <= U(i)
\end{verbatim}

Requiring the condition leads us to write

\begin{verbatim}
forall(i in 1..\text{MAXI}) x(i) <= U(i) | \text{exists}(\text{TAB}_i > 20)
\end{verbatim}
forall(i in 1..MAXI | TAB(i) > 20 ) x(i) <= U(i)

The symbol ‘|’ can be read as ‘such that’ or ‘subject to’.

Now suppose that we wish to model the following

\[ \sum_{i=1}^{\text{MAXI}} x_i \leq 15 \]

In other words, we just want to include in a sum those \( x_i \) for which \( A_i \) is greater than 20. This is accomplished by

\[ \text{CC} := \text{sum}\{(i \in 1..\text{MAXI} | A(i)>20 \) x(i) <= 15 \]

### 3.3.1 Conditional variable creation and `create`

As we have already seen in the transport example (Section 3.2), with Mosel we can conditionally create variables. In this section we show a few more examples.

Suppose that we have a set of decision variables \( x(i) \) where we do not know the set of \( i \) for which \( x(i) \) exist until we have read data into an array WHICH.

```mosel
model doesx
declarations
IR = 1..15
WHICH: set of integer
x: dynamic array(IR) of mpvar
end-declarations
! Read data from file
initializations from 'doesx.dat'
WHICH
end-initializations
! Create the x variables that exist
forall(i in WHICH) create(x(i))
! Build a little model to show what exists
Obj:= sum(i in IR) x(i)
C:= sum(i in IR) i * x(i) >= 5
<p> exportprob(0, "", Obj) ! Display the model
end-model
```

If the data in `doesx.dat` are

WHICH: [1 4 7 11 14]

the output from the model is

Minimize
\[ x(1) + x(4) + x(7) + x(11) + x(14) \]
Subject To
\[ C: x(1) + 4 x(4) + 7 x(7) + 11 x(11) + 14 x(14) >= 5 \]
Bounds
End

**Note:** `exportprob(0, "", Obj)` is a nice idiom for seeing on-screen the problem that has been created.

The key point is that \( x \) has been declared as a **dynamic array**, and then the variables that exist have been created explicitly with `create`. In the transport example in Section 3.2 we have seen a different way of declaring dynamic arrays: the arrays are implicitly declared as dynamic arrays since the index sets are unknown at their declaration.
When we later take operations over the index set of $x$ (for instance, summing), we only include those $x$ that have been created.

Another way to do this, is

```mosel
model doesx2
declarations
 WHICH: set of integer
end-declarations
initializations from 'doesx.dat'
 WHICH
end-initializations
finalize(WHICH)
declarations
 x: array(WHICH) of mpvar ! Here the array is _not_ dynamic
end-declarations ! because the set has been finalized
Obj:= sum(i in WHICH) x(i)
C:= sum(i in WHICH) i * x(i) >= 5
exportprob(0, "", Obj)
end-model
```

By default, an array is of fixed size if all of its indexing sets are of fixed size (i.e. they are either constant or have been finalized). Finalizing turns a dynamic set into a constant set consisting of the elements that are currently in the set. All subsequently declared arrays that are indexed by this set will be created as static (= fixed size). The second method has two advantages: it is more efficient, and it does not require us to think of the limits of the range IR a priori.

### 3.4 Reading sparse data

Suppose we want to read in data of the form

$$i, j, \text{value}_{ij}$$

from an ASCII file, setting up a dynamic array $A(\text{range}, \text{range})$ with just the $A(i, j) = \text{value}_{ij}$ for the pairs $(i, j)$ which exist in the file. Here is an example which shows three different ways of doing this. We read data from differently formatted files into three different arrays, and using writeln show that the arrays hold identical data.

#### 3.4.1 Data input with initializations from

The first method, using the initializations block, has already been introduced (transport problem in Section 3.2).

```mosel
model "Trio input (1)"
declarations
 A1: array(range,range) of real
end-declarations
! First method: use an initializations block
initializations from 'data_1.dat'
 A1 as 'MYDATA'
end-initializations
! Now let us see what we have
writeln('A1 is: ', A1)
end-model
```

The data file `data_1.dat` could be set up thus (every data item is preceded by its index-tuple):
This model produces the following output:

\[ A_1 = \{(1,1,12.5), (2,3,5.6), (3,2,1), (10,9,-7.1)\} \]

### 3.4.2 Data input with readln

The second way of setting up and accessing data demonstrates the immense flexibility of readln. The format of the data file may be freely defined by the user. After every call to read or readln the parameter nbread contains the number of items read. Its value should be tested to check whether the end of the data file has been reached or an error has occurred (e.g. unrecognized data items due to incorrect formatting of a data line). Notice that read and readln interpret spaces as separators between data items; strings containing spaces must therefore be quoted using either single or double quotes.

```mosel
model "Trio input (2)"
declarations
 A2: array(range,range) of real
 i, j: integer
end-declarations
! Second method: use the built-in readln function
fopen("data_2.dat",F_INPUT)
repeat
 readln('Tut(‘, i, ‘and’, j, ‘)=’, A2(i,j))
until getparam("nbread") < 6
fclose(F_INPUT)
! Now let us see what we have
writeln('A2 is: ', A2)
end-model
```

The data file `data_2.dat` could be set up thus:

File `data_2.dat`:

```
Tut(1 and 1)=12.5
Tut(2 and 3)=5.6
Tut(10 and 9)=-7.1
Tut(3 and 2)=1
```

When running this second model version we get the same output as before:

\[ A_2 = \{(1,1,12.5), (2,3,5.6), (3,2,1), (10,9,-7.1)\} \]

### 3.4.3 Data input with diskdata

As a third possibility, one may use the diskdata I/O driver from module mmetc to read in comma separated value (CSV) files. With this driver the data file may contain single line comments preceded with `!`.

```mosel
model "Trio input (3)"
uses "mmetc" ! Required for diskdata
declarations
 A3: array(range,range) of real
end-declarations
! Third method: use diskdata driver
initializations from 'mmetc.diskdata:'
 A3 as 'sparse,data_3.dat'
end-initializations
```

More advanced modeling features 24 Mosel User Guide
! Now let us see what we have
writeLn('A3 is: ', A3)
end-model

The data file data_3.dat is set up thus (one data item per line, preceded by its indices, all separated by commas):

    1, 1, 12.5
    2, 3, 5.6
    10,9, -7.1
    3, 2, 1

We obtain again the same output as before when running this model version:

    A3 is: [(1,1,12.5),(2,3,5.6),(3,2,1),(10,9,-7.1)]

Note: the diskdata format is deprecated, it is provided to enable the use of data sets designed for mp-model and does not support certain new features introduced by Mosel.
Chapter 4
Integer Programming

Though many systems can accurately be modeled as Linear Programs, there are situations where discontinuities are at the very core of the decision making problem. There seem to be three major areas where non-linear facilities are required

- where entities must inherently be selected from a discrete set;
- in modeling logical conditions; and
- in finding the global optimum over functions.

Mosel lets you model these non-linearities using a range of discrete (global) entities and then the Xpress-MP Mixed Integer Programming (MIP) optimizer can be used to find the overall (global) optimum of the problem. Usually the underlying structure is that of a Linear Program, but optimization may be used successfully when the non-linearities are separable into functions of just a few variables.

4.1 Integer Programming entities in Mosel

We shall show how to make variables and sets of variables into global entities by using the following declarations.

```plaintext
declarations
 IR = 1..8 ! Index range
 WEIGHT: array(IR) of real ! Weight table
 x: array(IR) of mpvar
end-declarations

WEIGHT:= [2, 5, 7, 10, 14, 18, 22, 30]
```

Xpress-MP handles the following global entities:

- **Binary variables**: decision variables that can take either the value 0 or the value 1 (do/don’t do variables).
  We make a variable, say \( x(4) \), binary by
  
  ```plaintext
 x(4) is_binary
  ```

- **Integer variables**: decision variables that can take only integer values.
  We make a variable, say \( x(7) \), integer by
  
  ```plaintext
 x(7) is_integer
  ```

- **Partial integer variables**: decision variables that can take integer values up to a specified limit and any value above that limit.
• Semi-continuous variables: decision variables that can take either the value 0, or a value between some lower limit and upper limit. Semi-continuous variables help model situations where if a variable is to be used at all, it has to be used at some minimum level.

  x(2) is_semcont 6  ! A ‘hole’ between 0 and 6, then continuous

• Semi-continuous integer variables: decision variables that can take either the value 0, or an integer value between some lower limit and upper limit. Semi-continuous integer variables help model situations where if a variable is to be used at all, it has to be used at some minimum level, and has to be integer.

  x(3) is_semint 7  ! A ‘hole’ between 0 and 7, then integer

• Special Ordered Sets of type one (SOS1): an ordered set of variables at most one of which can take a non-zero value.

• Special Ordered Sets of type two (SOS2): an ordered set of variables, of which at most two can be non-zero, and if two are non-zero these must be consecutive in their ordering. If the coefficients in the WEIGHT array determine the ordering of the variables, we might form a SOS1 or SOS2 set MYSOS by

  MY SOS := sum(i in IRng) WEIGHT(i) * x(i) is_sosX

where is_sosX is either is_sos1 for SOS1 sets, or is_sos2 for SOS2 sets. Alternatively, if the set S holds the members of the set and the linear constraint L contains the set variables’ coefficients used in ordering the variables (the so-called reference row entries), then we can do thus:

  makesos1(S,L)

with the obvious change for SOS2 sets. This method must be used if the coefficient (here WEIGHT(i)) of an intended set member is zero. With is_sosX the variable will not appear in the set since it does not appear in the linear expression.

Another point to note about Special Ordered Sets is that the ordering coefficients must be distinct (or else they are not doing their job of supplying an order!).

The most commonly used entities are binary variables, which can be employed to model a whole range of logical conditions. General integers are more frequently found where the underlying decision variable really has to take on a whole number value for the optimal solution to make sense. For instance, we might be considering the number of airplanes to charter, where fractions of an airplane are not meaningful and the optimal answer will probably involve so few planes that rounding to the nearest integer may not be satisfactory.

Partial integers provide some computational advantages in problems where it is acceptable to round the LP solution to an integer if the optimal value of a decision variable is quite large, but unacceptable if it is small. Semi-continuous variables are useful where, if some variable is to be used, its value must be no less than some minimum amount. If the variable is a semi-continuous integer variable, then it has the added restriction that it must be integral too.

Special Ordered Sets of type 1 are often used in modeling choice problems, where we have to select at most one thing from a set of items. The choice may be from such sets as: the time period in which to start a job; one of a finite set of possible sizes for building a factory; which machine type to process a part on. Special Ordered Sets of type 2 are typically used to model non-linear functions of a variable. They are the natural extension of the concepts of Separable Programming, but when embedded in a Branch-and-Bound code (see below) enable truly global optima to be found, and not just local optima. (A local optimum is a point where all the nearest neighbors are worse than it, but where we have no guarantee that there is not a better point some way away. A global optimum is a point which we know to be the best. In the Himalayas the summit of K2 is a local maximum height, whereas the summit of Everest is the global maximum height).
Theoretically, models that can be built with any of the entities we have listed above can be modeled solely with binary variables. The reason why modern IP systems have some or all of the extra entities is that they often provide significant computational savings in computer time and storage when trying to solve the resulting model. Most books and courses on Integer Programming do not emphasize this point adequately. We have found that careful use of the non-binary global entities often yields very considerable reductions in solution times over ones that just use binary variables.

To illustrate the use of Mosel in modeling Integer Programming problems, a small example follows. The first formulation uses binary variables. This formulation is then modified use Special Ordered Sets.


### 4.2 A project planning model

A company has several projects that it must undertake in the next few months. Each project lasts for a given time (its duration) and uses up one resource as soon as it starts. The resource profile is the amount of the resource that is used in the months following the start of the project. For instance, project 1 uses up 3 units of resource in the month it starts, 4 units in its second month, and 2 units in its last month.

The problem is to decide when to start each project, subject to not using more of any resource in a given month than is available. The benefit from the project only starts to accrue when the project has been completed, and then it accrues at $BEN_p$ per month for project $p$, up to the end of the time horizon. Below, we give a mathematical formulation of the above project planning problem, and then display the Mosel model form.

#### 4.2.1 Model formulation

Let $PROJ$ denote the set of projects and $MONTHS = \{1, \ldots, NM\}$ the set of months to plan for. The data are:

- $DUR_p$ the duration of project $p$
- $RESUSE_{pt}$ the resource usage of project $p$ in its $t^{th}$ month
- $RESMAX_m$ the resource available in month $m$
- $BEN_p$ the benefit per month when project finishes

We introduce the binary decision variables $start_{pm}$ that are 1 if project $p$ starts in month $m$, and 0 otherwise.

The objective function is obtained by noting that the benefit coming from a project only starts to accrue when the project has finished. If it starts in month $m$ then it finishes in month $m + DUR_p - 1$. So, in total, we get the benefit of $BEN_p$ for $NM - (m + DUR_p - 1) = NM - m - DUR_p + 1$ months. We must consider all the possible projects, and all the starting months that let the project finish before the end of the planning period. For the project to complete it must start no later than month $NM - DUR_p$. Thus the profit is:

$$\sum_{p \in PROJ} \sum_{m=1}^{NM-DUR_p} (BEN_p \cdot (NM - m - DUR_p + 1)) \cdot start_{pm}$$

Each project must be done once, so it must start in one of the months 1 to $NM - DUR_p$:

$$\forall p \in PROJ : \sum_{m \in MONTHS} start_{pm} = 1$$
We next need to consider the implications of the limited resource availability each month. Note that if a project \( p \) starts in month \( m \) it is in its \((k - m + 1)\)th month in month \( k \), and so will be using \( RESUSE_{p,k-m+1} \) units of the resource. Adding this up for all projects and all starting months up to and including the particular month \( k \) under consideration gives:

\[
\forall k \in MONTHS: \sum_{p \in PROJ} \sum_{m=1}^{k} RESUSE_{p,k+1-m} \cdot start_{pm} \leq RESMAX_k
\]

Finally we have to specify that the \( start_{pm} \) are binary (0 or 1) variables:

\[
\forall p \in PROJ, m \in MONTHS : start_{pm} \in \{0, 1\}
\]

Note that the start month of a project \( p \) is given by:

\[
\sum_{m=1}^{NM-DUR_p} m \cdot start_{pm}
\]

since if an \( start_{pm} \) is 1 the summation picks up the corresponding \( m \).

### 4.2.2 Implementation

The model as specified to Mosel is as follows:

```mosel
model Pplan
uses "mmxprs"
declarations
PROJ = 1..3 ! Set of projects
NM = 6 ! Time horizon (months)
MONTHS = 1..NM ! Set of time periods (months) to plan for
DUR: array(PROJ) of integer ! Duration of project \(p \)
RESUSE: array(PROJ,MONTHS) of integer ! Res. usage of proj. \(p \) in its \(t \)'th month
RESMAX: array(MONTHS) of integer ! Resource available in month \(m \)
BEN: array(PROJ) of real ! Benefit per month once project finished
start: array(PROJ,MONTHS) of mpvar ! 1 if proj \(p \) starts in month \(t \), else 0
end-declarations
DUR := [3, 3, 4]
RESMAX := [5, 6, 5, 4, 5, 4]
RESUSE(1,1):= [3, 4, 2]
RESUSE(2,1):= [4, 1, 6]
RESUSE(3,1):= [3, 2, 1, 2] ! Other RESUSE entries are 0 by default
!
! Objective: Maximize Benefit
! If project \(p \) starts in month \(t \), it finishes in month \(t+DUR(p)-1 \) and
! contributes a benefit of \(BEN(p) \) for the remaining \(NM-(t+DUR(p)-1) \) months:
MaxBen:=
sum(p in PROJ, m in 1..NM-DUR(p)) (BEN(p) * (NM-m-DUR(p)+1)) * start(p,m)
!
! Each project starts once and only once:
forall(p in PROJ) One(p):= sum(m in MONTHS) start(p,m) = 1
!
! Resource availability:
! A project starting in month \(m \) is in its \(k-m+1 \)'st month in month \(k \):
forall(k in MONTHS) ResMax(k):=
sum(p in PROJ, m in 1..k) RESUSE(p,k+1-m) * start(p,m) \leq RESMAX(k)
!
! Make all the start variables binary
forall(p in PROJ, m in MONTHS) start(p,m) is_binary
maximize(MaxBen) ! Solve the MIP-problem
```

writeln("Solution value is: ", getobjval)
forall(p in PROJ) writeln( p, " starts in month ",
                getsol(sum(m in 1..NM-DUR(p)) m*start(p,m)) )
end-model

Note that in the solution printout we apply the getsol function not to a single variable but to a linear expression.

4.3 The project planning model using Special Ordered Sets

The example can be modified to use Special Ordered Sets of type 1 (SOS1). The \( \text{start}_{pm} \) variables for a given \( p \) form a set of variables which are ordered by \( m \), the month. The ordering is induced by the coefficients of the \( \text{start}_{pm} \) in the specification of the SOS. For example, \( \text{start}_{p1} \)'s coefficient, 1, is less than \( \text{start}_{p2} \)'s, 2, which in turn is less than \( \text{start}_{p3} \)'s coefficient, and so on.

The fact that the \( \text{start}_{pm} \) variables for a given \( p \) form a set of variables is specified to Mosel as follows:

\[
\text{forall}(p \in \text{PROJ}) \ XSet(p):= \text{sum}(m \in \text{MONTHS}) m \cdot \text{start}(p,m) \ is \_ \text{ sos1}
\]

The \text{is sos1} specification tells Mosel that \text{Xset}(p) is a Special Ordered Set of type 1.

The linear expression specifies both the set members and the coefficients that order the set members. It says that all the \( \text{start}_{pm} \) variables for \( m \) in the \text{MONTHS} index range are members of an SOS1 with reference row entries \( m \).

The specification of the \( \text{start}_{pm} \) as binary variables must now be removed. The binary nature of the \( \text{start}_{pm} \) is implied by the SOS1 property, since if the \( \text{start}_{pm} \) must add up to 1 and only one of them can differ from zero, then just one is 1 and the others are 0.

If the two formulations are equivalent why were Special Ordered Sets invented, and why are they useful? The answer lies in the way the reference row gives the search procedure in Integer Programming (IP) good clues as to where the best solution lies. Quite frequently the Linear Programming (LP) problem that is solved as a first approximation to an Integer Program gives an answer where \( \text{start}_{p1} \) is fractional, say with a value of 0.5, and \( \text{start}_{p,NM} \) takes on the same fractional value. The IP will say:

'\text{my job is to get variables to 0 or 1. Most of the variables are already there so I will try moving x1 or xT. Since the set members must add up to 1.0, one of them will go to 1, and one to 0. So I think that we start the project either in the first month or in the last month.'

A much better guess is to see that the \( \text{start}_{pm} \) are ordered and the LP solution is telling us it looks as if the best month to start is somewhere midway between the first and the last month. When sets are present, the IP can branch on sets of variables. It might well separate the months into those before the middle of the period, and those later. It can then try forcing all the early \( \text{start}_{pm} \) to 0, and restricting the choice of the one \( \text{start}_{pm} \) that can be 1 to the later \( \text{start}_{pm} \). It has this option because it now has the information to 'know' what is an early and what is a late \( \text{start}_{pm} \), whereas these variables were unordered in the binary formulation.

The power of the set formulation can only really be judged by its effectiveness in solving large, difficult problems. When it is incorporated into a good IP system such as Xpress-MP it is often found to be an order of magnitude better than the equivalent binary formulation for large problems.
Chapter 5
Overview of subroutines and reserved words

There is a range of built-in functions and procedures available in Mosel. They are described fully in the Mosel Language Reference Manual. Here is a summary.

- **Accessing solution values:** getsol, getact, getcoeff, getdual, getrcost, getslack, getobjval
- **Arithmetic functions:** arctan, cos, sin, ceil, floor, round, exp, ln, log, sqrt, isodd
- **List functions:** maxlist, minlist
- **String functions:** strfmt, substr
- **Dynamic array handling:** create, finalize
- **File handling:** fclose, fflush, fopen, fselect, fskipline, getfid, iseof, read, readln
- **Accessing control parameters:** getparam, setparam
- **Getting information:** getsize, gettype, getvars
- **Hiding constraints:** sethidden, ishidden
- **Miscellaneous functions:** exportprob, bittest, random, setcoeff, settype, exit

5.1 Modules

The distribution of Mosel contains several *modules* that add extra functionality to the language.

A full list of the functionality of a module can be obtained by using Mosel’s `exam` command, for instance

```
mosel -c "exam mmsystem"
```

In this manual, we always use Xpress-Optimizer as solver. Access to the corresponding optimization functions is provided by the module `mmxprs`.

In the `mmxprs` module are the following useful functions.

- **Optimize:** minimize, maximize
- **MIP directives:** setmipdir, clearmipdir
- **Handling bases:** savebasis, loadbasis, delbasis
• Force problem loading: loadprob
• Accessing problem status: getprobstat
• Deal with bounds: setlb, setub, getlb, getub
• Model cut functions: setmodcut, clearmodcut

For example, here is a nice habit to get into when solving a problem with the Xpress-MP Optimizer.

declarations
    status:array({XPRS_OPT,XPRS_UNF,XPRS_INF,XPRS_UNB}) of string
end-declarations

status:=["Optimum found","Unfinished","Infeasible","Unbounded"]
...
minimize(Obj)
writeln(status(getprobstat))

In the mmsystem module are various useful functions provided by the underlying operating system:

• Delete a file/directory: fdelete, removedir
• Move a file: fmove
• Current working directory: getcwd
• Get an environment variable’s value: getenv
• File status: getfstat
• Returns the system status: getsysstat
• Time: gettime
• Make a directory: makedir
• General system call: system

Other modules mentioned in this manual are mmodbc and mnetc.

See the module reference manuals for full details.

5.2 Reserved words

The following words are reserved in Mosel. The upper case versions are also reserved (i.e. AND and and are keywords but not And). Do not use them in a model except with their built-in meaning.

and, array, as
boolean, break
case
declarations, div, do, dynamic
eelif, else, end
false, forall, forward, from, function
if, in, include, initialisations, initializations, integer, inter,
is_binary, is_continuous, is_free, is_integer, is_partint, is_semcont,
is_semint, is_sos1, is_sos2
linctr
max, min, mod, model, mpvar
next, not

Overview of subroutines and reserved words 32 Mosel User Guide
of, options, or
parameters, procedure, public, prod
range, real, repeat
set, string, sum
then, to, true
union, until, uses
while
Chapter 6
Correcting syntax errors in Mosel

The parser of Mosel is able to detect a large number of errors that may occur when writing a model. In this chapter we shall try to analyze and correct some of these.

If we compile the model

```mosel
model 'Plenty of errors'
declarations
small, large: mpvar
end-declarations

Profit= 5*small + 20*large
Boxwood:= small + 3*large <= 200
Lathe:= 3*small + 2*large <= 160

maximize(Profit)
writeln("Best profit is ", getobjval
end-model
```

we get the following output:

```
Mosel: E-100 at (1,7) of 'poerror.mos': Syntax error before '''.
Parsing failed.
```

The second line of the output informs us that the compilation has not been executed correctly. The first line tells us exactly the type of the error that has been detected, namely a syntax error with the code E-100 (where E stands for error) and its location: line 1 character 7. The problem is caused by the apostrophe ‘’ (or something preceding it). Indeed, Mosel expects either single or double quotes around the name of the model if the name contains blanks. We therefore replace it by ‘’ and compile the corrected model, resulting in the following display:

```
Mosel: E-100 at (1,7) of 'poerror.mos': Syntax error before ‘’.
Parsing failed.
```

There is a problem with the sign = in the 6th line:

```
Profit= 5*small + 20*large
```

In the model body the equality sign = may only be used in the definition of constraints or in logical expressions. Constraints are linear relations between variables, but profit has not been defined as a variable, so the parser detects an error. What we really want, is to assign the linear expression 5*small + 20*large to Profit. For such an assignment we have to use the sign :=. Using just = is a very common error.
As a consequence of this error, the linear expression after the equality sign does not have any relevance to the problem that is stated. The parser informs us about this fact in the second line: it has found a statement with no effect. This is not an error that would cause the failure of the compilation taken on its own, but simply a warning (marked by the W in the error code W-121) that there may be something to look into. Since Profit has not been defined, it cannot be used in the call to the optimization, hence the third error message.

As we have seen, the second and the third error messages are consequences of the first mistake we have made. Before looking at the last message that has been displayed we recompile the model with the corrected line

\[
\text{Profit:= } 5 \times \text{small} + 20 \times \text{large}
\]

to get rid of all side effects of this error. Unfortunately, we still get a few error messages:

Mosel: E-123 at (10,17) of 'poerror.mos': 'maximize' is not defined.
Mosel: E-100 at (12,37) of 'poerror.mos': Syntax error.

There is still a problem in line 10; this time it shows up at the very end of the line. Although everything appears to be correct, the parser does not seem to know what to do with maximize. The solution to this enigma is that we have forgotten to load the module mmxprs that provides the optimization function maximize. To tell Mosel that this module is used we need to add the line

\[
\text{uses "mmxprs"}
\]

immediately after the start of the model, before the declarations block. Forgetting to specify mmxprs is another common error. We now have a closer look at line 12 (which has now become line 13 due to the addition of the uses statement). All subroutines called in this line (writeln and getobjval) are provided by Mosel, so there must be yet another problem: we have forgotten to close the parentheses. After adding the closing parenthesis after getobjval the model finally compiles without displaying any errors. If we run it we obtain the desired output:

\[
\text{Best profit is 1333.33}
\]
\[
\text{Returned value: 0}
\]

Besides the detection of syntax errors, Mosel may also give some help in finding run time errors. It should only be pointed out here that it is possible to add the flag \(-g\) to the compile command to obtain some information about where the error occurred in the program. Also useful is turning on verbose reporting, for instance

\[
\text{setparam("XPRS_VERBOSE",true)}
\]
\[
\text{setparam("XPRS_LOADNAMES",true)}
\]
II. Advanced language features
Overview

This part takes the reader who wants to use Mosel as a modeling, solving and programming environment through its powerful programming language facilities. The following topics, most of which have already shortly been mentioned in the first part, are covered in a more detailed way:

- Selections and loops (Chapter 7)
- Working with sets (Chapter 8)
- Functions and procedures (Chapter 9)
- Output to files and producing formatted output (Chapter 10)

Whilst the first four chapters in this part present pure programming examples, the last two chapters contain some advanced examples of LP and MIP that make use of the programming facilities in Mosel:

- Cut generation (Section 11.1)
- Column generation (Section 11.2)
- Recursion or Successive Linear Programming (Section 12.1)
- Goal Programming (Section 12.2)
Chapter 7
Flow control constructs

Flow control constructs are mechanisms for controlling the order of the execution of the actions in a program. In this chapter we are going to have a closer look at two fundamental types of control constructs in Mosel: selections and loops.

Frequently actions in a program need to be repeated a certain number of times, for instance for all possible values of some index or depending on whether a condition is fulfilled or not. This is the purpose of loops. Since in practical applications loops are often interwoven with conditions (selection statements), these are introduced first.

7.1 Selections

Mosel provides several statements to express a selection between different actions to be taken in a program. The simplest form of a selection is the if-then statement:

- **if-then**: ‘If a condition holds do something’. For example:

  ```mosel
 if A >= 20 then
 x <= 7
 end-if
  ```

  For an integer number $A$ and a variable $x$ of type `mpvar`, $x$ is constrained to be less or equal to 7 if $A$ is greater or equal 20.

  Note that there may be any number of expressions between `then` and `end-if`, not just a single one.

  In other cases, it may be necessary to express choices with alternatives.

- **if-then-else**: ‘If a condition holds, do this, otherwise do something else’. For example:

  ```mosel
 if A >= 20 then
 x <= 7
 else
 x >= 35
 end-if
  ```

  Here the upper bound 7 is applied to the variable $x$ if the value of $A$ is greater or equal 20, otherwise the lower bound 35 is applied to it.

- **if-then-elif-then-else**: ‘If a condition holds do this, otherwise, if a second condition holds do something else etc.’

  ```mosel
 if A >= 20 then
 x <= 7
 elif A <= 10 then
 x >= 35
 else
 x = 0
 end-if
  ```
Here the upper bound 7 is applied to the variable $x$ if the value of $A$ is greater or equal 20, and if the value of $A$ is less or equal 10 then the lower bound 35 is applied to $x$. In all other cases (that is, $A$ is greater than 10 and smaller than 20), $x$ is fixed to 0.

Note that this could also be written using two separate `if-then` statements but it is more efficient to use `if-then-elif-then[-else]` if the cases that are tested are mutually exclusive.

- **case** ‘Depending on the value of an expression do something’.

  ```mosel
case A of
 -MAX_INT..-10 : x >= 35
 20..MAX_INT : x <= 7
 12, 15 : x = 1
 else x = 0
end-case
```

Here the upper bound 7 is applied to the variable $x$ if the value of $A$ is greater or equal 20, and the lower bound 35 is applied if the value of $A$ is less or equal 10. In addition, $x$ is fixed to 1 if $A$ has value 12 or 15, and fixed to 0 for all remaining values.

An example for the use of the case statement is given in Section 12.2.

The following example uses the `if-then-elif-then` statement to compute the minimum and the maximum of a set of randomly generated numbers:

```mosel
class Minmax
 declarations
 SNumbers: set of integer
 LB=-1000 ! Elements of SNumbers must be between LB and UB
 UB=1000 ! and UB
 end-declarations

 ! Generate a set of 50 randomly chosen numbers
 forall(i in 1..50)
 SNumbers += {round(random * 200)-100}
 writeln("Set: ", SNumbers, " (size: ", getsize(SNumbers), ")")

 minval:=UB
 maxval:=LB
 forall(p in SNumbers)
 if p<minval then
 minval:=p
 elsif p>maxval then
 maxval:=p
 end-if
 writeln("Min: ", minval, ", Max: ", maxval)
end-class
```

Instead of writing the loop above, it would of course be possible to use the corresponding operators `min` and `max` provided by Mosel:

```mosel
writeln("Min: ", min(p in SNumbers) p, ", Max: ", max(p in SNumbers) p)
```

It is good programming practice to indent the block of statements in loops or selections as in the preceding example so that it becomes easy to get an overview where the loop or the selection ends. — At the same time this may serve as a control whether the loop or selection has been terminated correctly (i.e. no `end-if` or similar key words terminating loops have been left out).

### 7.2 Loops

Loops group actions that need to be repeated a certain number of times, either for all values
of some index or counter (forall) or depending on whether a condition is fulfilled or not (while, repeat-until).

This section presents the complete set of loops available in Mosel, namely forall, forall-do, while, while-do, and repeat-until.

### 7.2.1 **forall**

The **forall** loop repeats a statement or block of statements for all values of an index or counter. If the set of values is given as an interval of integers (range), the enumeration starts with the smallest value. For any other type of sets the order of enumeration depends on the current (internal) order of the elements in the set.

The **forall** loop exists in two different versions in Mosel. The inline version of the **forall** loop (i.e. looping over a single statement) has already been used repeatedly, for example as in the following loop that constrains variables \( x(i) \) \((i=1,...,10)\) to be binary.

\[
\text{forall}(i \text{ in } 1..10) \ x(i) \text{ is_binary}
\]

The second version of this loop, **forall-do**, may enclose a block of statements, the end of which is marked by **end-do**.

Note that the indices of a **forall** loop can not be modified inside the loop. Furthermore, they must be new objects: a symbol that has been declared cannot be used as index of a **forall** loop.

The following example that calculates all perfect numbers between 1 and a given upper limit combines both types of the **forall** loop. (A number is called **perfect** if the sum of its divisors is equal to the number itself.)

```mosel
model Perfect
 parameters
 LIMIT=100
 end-parameters
 writeln("Perfect numbers between 1 and ", LIMIT, ":")
 forall(p in 1..LIMIT) do
 sumd:=1
 forall(d in 2..p-1)
 if p mod d = 0 then ! Mosel’s built-in mod operator
 sumd+=d ! The same as sum:= sum + d
 end-if
 end-if
 if p=sumd then
 writeln(p)
 end-if
 end-do
end-model
```

The outer loop encloses several statements, we therefore need to use **forall-do**. The inner loop only applies to a single statement (**if** statement) so that we may use the inline version **forall**.

If run with the default parameter settings, this program computes the solution 1, 6, 28.

#### 7.2.1.1 **Multiple indices**

The **forall** statement (just like the **sum** operator and any other statement in Mosel that requires index set(s)) may take any number of indices, with values in sets of any basic type or ranges of integer values. If two or more indices have the same set of values as in

\[
\text{forall}(i \text{ in } 1..10, \ j \text{ in } 1..10) \ y(i,j) \text{ is_binary}
\]
(where \( y(i,j) \) are variables of type \texttt{mpvar}) the following equivalent short form may be used:

\[
\text{forall}(i,j \in 1..10) \ y(i,j) \text{ is_binary}
\]

### 7.2.1.2 Conditional looping

The possibility of adding conditions to a \texttt{forall} loop via the \texttt{'} symbol has already been mentioned in Chapter 3. Conditions may be applied to one or several indices and the selection statement(s) can be placed accordingly. Take a look at the following example where \( A \) and \( U \) are one- and two-dimensional arrays of integers or reals respectively, and \( y \) a two-dimensional array of decision variables (\texttt{mpvar}):

\[
\text{forall}(i \in -10..10, j \in 0..5 \ | \ A(i) > 20) \ y(i,j) \leq U(i,j)
\]

For all \( i \) from -10 to 10, the upper bound \( U(i,j) \) is applied to the variable \( y(i,j) \) if the value of \( A(i) \) is greater than 20.

The same conditional loop may be reformulated (in an equivalent but usually less efficient way) using the \texttt{if} statement:

\[
\text{forall}(i \in -10..10, j \in 0..5)
\text{if} \ A(i) > 20
\ y(i,j) \leq U(i,j)
\text{end-if}
\]

If we have a second selection statement on both indices with \( B \) a two-dimensional array of integers or reals, we may either write

\[
\text{forall}(i \in -10..10, j \in 0..5 \ | \ A(i) > 20 \text{ and } B(i,j) <> 0) \ y(i,j) \leq U(i,j)
\]

or, more efficiently, since the second condition on both indices is only tested if the condition on index \( i \) holds:

\[
\text{forall}(i \in -10..10 \ | \ A(i) > 20, j \in 0..5 \ | \ B(i,j) <> 0) \ y(i,j) \leq U(i,j)
\]

### 7.2.2 while

A \texttt{while} loop is typically employed if the number of times that the loop needs to be executed is not known beforehand but depends on the evaluation of some condition: a set of statements is repeated while a condition holds. As with \texttt{forall}, the \texttt{while} statement exists in two versions, an inline version (\texttt{while}) and a version (\texttt{while-do}) that is to be used with a block of program statements.

The following example computes the largest common divisor of two integer numbers \( A \) and \( B \) (that is, the largest number by which both \( A \) and \( B \), can be divided without remainder). Since there is only a single \texttt{if-then-else} statement in the \texttt{while} loop we could use the inline version of the loop but, for clarity’s sake, we have given preference to the \texttt{while-do} version that marks where the loop terminates clearly.

```plaintext
model Lcdiv1
declarations
A,B: integer
end-declarations
write("Enter two integer numbers:
 A: ")
readln(A)
write(" B: ")
readln(B)
while (A <> B) do
if (A>B) then
A:=A-B
```
else B:=B-A
end-if
end-do

writeln("Largest common divisor: ", A)
end-model

7.2.3 repeat until

The repeat-until structure is similar to the while statement with the difference that the actions in the loop are executed once before the termination condition is tested for the first time.

The following example combines the three types of loops (forall, while, repeat-until) that are available in Mosel. It implements a Shell sort algorithm for sorting an array of numbers into numerical order. The idea of this algorithm is to first sort, by straight insertion, small groups of numbers. Then several small groups are combined and sorted. This step is repeated until the whole list of numbers is sorted.

The spacings between the numbers of groups sorted on each pass through the data are called the increments. A good choice is the sequence which can be generated by the recurrence \( inc_1 = 1, \quad inc_{k+1} = 3 \cdot inc_k + 1, \quad k = 1, 2, \ldots \)

model "Shell sort"

declarations
N: integer ! Size of array ANum
ANum: array(range) of real ! Unsorted array of numbers
end-declarations

N:=50
forall(i in 1..N)
ANum(i):=round(random*100)
writeln("Given list of numbers (size: ", N, ": ")
forall(i in 1..N) write(ANum(i), " ")
writeln
inc:=1 ! Determine the starting increment
repeat
inc:=3*inc+1
until (inc>N)
repeat ! Loop over the partial sorts
inc:=inc div 3
forall(i in inc+1..N) do ! Outer loop of straight insertion
v:=ANum(i)
j:=i
while (ANum(j-inc)>v) do ! Inner loop of straight insertion
ANum(j):=ANum(j-inc)
j -= inc
if j<=inc then break; end-if
end-do
ANum(j):= v
end-do
until (inc<=1)

writeln("Ordered list: ")
forall(i in 1..N) write(ANum(i), " ")
writeln
end-model

The example introduces a new statement: break. It can be used to interrupt one or several loops. In our case it stops the inner while loop. Since we are jumping out of a single loop, we could as well write break 1. If we wrote break 3, the break would make the algorithm jump 3 loop levels higher, that is outside of the repeat-until loop.

Note that there is no limit to the number of nested levels of loops and/or selections in Mosel.
Chapter 8
Sets

A set collects objects of the same type without establishing an order among them (as is the case with arrays). In Mosel, sets may be defined for all elementary types, that is the basic types (integer, real, string, boolean) and the MP types (mpvar and linctr).

This chapter presents in a more systematic way the different possibilities how sets may be initialized (all of which the reader has already encountered in the examples in the first part), and shows also more advanced ways of working with sets.

8.1 Initializing sets

In the revised formulation of the burglar problem in Chapter 2 and also in the models in Chapter 3 we have already seen different examples for the use of index sets. We recall here the relevant parts of the respective models.

8.1.1 Constant sets

In the Burglar example the index set is assigned directly in the model:

```mosel
declarations
ITEMS={"camera", "necklace", "vase", "picture", "tv", "video",
"chest", "brick"}
end-declarations
```

Since in this example the set contents is set in the declarations section, the index set ITEMS is a constant set (its contents cannot be changed). To declare it as a dynamic set, the contents needs to be assigned after its declaration:

```mosel
declarations
ITEMS: set of string
end-declarations

ITEMS={"camera", "necklace", "vase", "picture", "tv", "video",
"chest", "brick"}
```

8.1.2 Set initialization from file, finalized and fixed sets

In Chapter 4 the reader has encountered several examples how the contents of sets may be initialized from data files.

The contents of the set may be read in directly as in the following case:

```mosel
declarations
WHICH: set of integer
end-declarations
```
Where \( \text{idata.dat} \) contains data in the following format:

\[
\text{WHICH: } [1 \ 4 \ 7 \ 11 \ 14]
\]

Unless a set is constant, arrays that are indexed by this set are created as dynamic arrays. Since in many cases the contents of a set does not change any more after its initialization, Mosel provides the `finalize` statement that turns a (dynamic) set into a constant set. Consider the continuation of the example above:

```
finalize(WHICH)
```

```
declarations
 x: array(WHICH) of mpvar
end-declarations
```

The array of variables \( x \) will be created as a static array, without the `finalize` statement it would be dynamic since the index set \( \text{WHICH} \) may still be subject to changes. Declaring arrays in the form of static arrays is preferable if the indexing set is known before because this allows Mosel to handle them in a more efficient way.

Index sets may also be initialized indirectly during the initialization of dynamic arrays:

```
declarations
 REGION: set of string
 DEMAND: array(REGION) of real
end-declarations
```

```
initializations from 'transprt.dat'
DEMAND
end-initializations
```

If file \( \text{transprt.dat} \) contains the data:

\[
\text{DEMAND: } [(\text{Scotland}) \ 2840 \ (\text{North}) \ 2800 \ (\text{West}) \ 2600 \ (\text{SEast}) \ 2820 \ (\text{Midlands}) \ 2750]
\]

then printing the set \( \text{REGION} \) after the initialization will give the following output:

\[
\{\text{Scotland}', \text{'North}', \text{'West}', \text{'SEast}', \text{'Midlands'}}\}
\]

Once a set is used for indexing an array (of data, decision variables etc.) it is fixed, that is, its elements can no longer be removed, but it may still grow in size.

The indirect initialization of (index) sets is not restricted to the case that data is input from file. In the following example we add an array of variable descriptions to the chess problem introduced in Chapter 1. These descriptions may, for instance, be used for generating a nice output. Since the array \( \text{DescrV} \) and its indexing set \( \text{Allvars} \) are dynamic they grow with each new variable description that is added to \( \text{DescrV} \).

```
model "Chess 3"
uses "mmxprs"
```

```
declarations
 Allvars: set of mpvar
 DescrV: array(Allvars) of string
 small, large: mpvar
end-declarations
```

```
DescrV(small):= "Number of small chess sets"
DescrV(large):= "Number of large chess sets"
```

```
Profit:= 5*small + 20*large
Lathe:= 3*small + 2*large <= 160
Boxwood:= small + 3*large <= 200
```
maximize(Profit)

writeln("Solution:
 Objective: ", getobjval)
writeln(DescrV(small), ": ", getsol(small))
writeln(DescrV(large), ": ", getsol(large))
end-model

The reader may have already remarked another feature that is illustrated by this example: the indexing set Allvars is of type mpvar. So far only basic types have occurred as index set types but as mentioned earlier, sets in Mosel may be of any elementary type, including the MP types mpvar and linctr.

### 8.2 Working with sets

In all examples of sets given so far sets are used for indexing other modeling objects. But they may also be used for different purposes.

The following example demonstrates the use of basic set operations in Mosel: union (+), intersection (*), and difference (-):

model "Set example"

declarations
Cities={"rome", "bristol", "london", "paris", "liverpool"}
Ports={"plymouth", "bristol", "glasgow", "london", "calais", "liverpool"}
Capitals={"rome", "london", "paris", "madrid", "berlin"}
end-declarations

Places:= Cities+Ports+Capitals  ! Create the union of all 3 sets
In_all_three:= Cities*Ports*Capitals  ! Create the intersection of all 3 sets
Cities_not_cap:= Cities-Capitals  ! Create the set of all cities that are not capitals

writeln("Union of all places: ", Places)
writeln("Intersection of all three: ", In_all_three)
writeln("Cities that are not capitals: ", Cities_not_cap)
end-model

The output of this example will look as follows:

Union of all places:{'rome','bristol','london','paris','liverpool','plymouth','bristol','glasgow','london','calais','liverpool','rome','paris','madrid','berlin'}
Intersection of all three: {'london'}
Cities that are not capitals: {'bristol','liverpool'}

Sets in Mosel are indeed a powerful facility for programming as in the following example that calculates all prime numbers between 2 and some given limit.

Starting with the smallest one, the algorithm takes every element of a set of numbers SNumbers (positive numbers between 2 and some upper limit that may be specified when running the model), adds it to the set of prime numbers SPrime and removes the number and all its multiples from the set SNumbers.

model Prime

parameters
LIMIT=100  ! Search for prime numbers in 2..LIMIT
end-parameters

declarations
SNumbers: set of integer  ! Set of numbers to be checked
SPrime: set of integer ! Set of prime numbers
end-declarations
SNumbers:= {2..LIMIT}
writeln("Prime numbers between 2 and ", LIMIT, ":")
n:=2
repeat
  while (not(n in SNumbers)) n+=1  ! n is a prime number
  SPrime += {n}
  i:=n
  while (i<=LIMIT) do  ! Remove n and all its multiples
    SNumbers-= {i}
    i+=n
  end-do
until SNumbers=()
writeln(SPrime)
writeln(" (", getsize(SPrime), ", prime numbers.)")
end-model

This example uses a new function, getsize, that if applied to a set returns the number of elements of the set. The condition in the while loop is the logical negation of an expression, marked with not: the loop is repeated as long as the condition n in SNumbers is not satisfied.

8.2.1 Set operators

The preceding example introduces the operator += to add sets to a set (there is also an operator -= to remove subsets from a set). Another set operator used in the example is in denoting that a single object is contained in a set. We have already encountered this operator in the enumeration of indices for the forall loop.

Mosel also defines the standard operators for comparing sets: subset (<=), superset (>=), difference (<>,), end equality (=). Their use is illustrated by the following example:

model "Set comparisons"
declarations
  RAINBOW = {"red", "orange", "yellow", "green", "blue", "purple"}
  BRIGHT = {"yellow", "orange"}
  DARK = {"blue", "brown", "black"}
end-declarations
writeln("BRIGHT is included in RAINBOW: ", BRIGHT <= RAINBOW)
writeln("RAINBOW is a superset of DARK: ", RAINBOW >= DARK)
writeln("BRIGHT is different from DARK: ", BRIGHT <> DARK)
writeln("BRIGHT is the same as RAINBOW: ", BRIGHT = RAINBOW)
end-model

As one might have expected, this example produces the following output:

BRIGHT is included in RAINBOW: true
RAINBOW is a superset of DARK: false
BRIGHT is different from DARK: true
BRIGHT is the same as RAINBOW: false
Chapter 9
Functions and procedures

When programs grow larger than the small examples presented so far, it becomes necessary to introduce some structure that makes them easier to read and to maintain. Usually, this is done by dividing the tasks that have to be executed into subtasks which may again be subdivided, and indicating the order in which these subtasks have to be executed and which are their activation conditions. To facilitate this structured approach, Mosel provides the concept of subroutines. Using subroutines, longer and more complex programs can be broken down into smaller subtasks that are easier to understand and to work with. Subroutines may be employed in the form of procedures or functions. Procedures are called as a program statement, they have no return value, functions must be called in an expression that uses their return value.

Mosel provides a set of predefined subroutines (for a comprehensive documentation the reader is referred to the Mosel Reference Manual), and it is possible to define new functions and procedures according to the needs of a specific program. A procedure that has occured repeatedly in this document is writeln. Typical examples of functions are mathematical functions like abs, floor, ln, sin etc.

9.1 Subroutine definition

User defined subroutines in Mosel have to be marked with procedure / end-procedure and function / end-function respectively. The return value of a function has to be assigned to returned as shown in the following example.

```
model "Simple subroutines"
 declarations
 a:integer
 end-declarations
 function three:integer
 returned := 3
 end-function
 procedure print_start
 writeln("The program starts here.")
 end-procedure
 print_start
 a:=three
 writeln("a = ", a)
end-model
```

This program will produce the following output:

```
The program starts here.
a = 3
```
9.2 Parameters

In many cases, the actions to be performed by a procedure or the return value expected from a function depend on the current value of one or several objects in the calling program. It is therefore possible to pass parameters into a subroutine. The (list of) parameter(s) is added in parantheses behind the name of the subroutine:

```mosel
function times_two(b:integer):integer
 returned := 2*b
end-function
```

The structure of subroutines being very similar to the one of model, they may also include declarations sections for declaring local parameters that are only valid in the corresponding subroutine. It should be noted that such local parameters may mask global parameters within the scope of a subroutine, but they have no effect on the definition of the global parameter outside of the subroutine as is shown below in the extension of the example 'Simple subroutines'. Whilst it is not possible to modify function/procedure parameters in the corresponding subroutine, as in other programming languages the declaration of local parameters may hide these parameters. Mosel considers this as a possible mistake and prints a warning during compilation (without any consequence for the execution of the program).

```mosel
model "Simple subroutines"

declarations
 a:integer
end-declarations

function three:integer
 returned := 3
end-function

function times_two(b:integer):integer
 returned := 2*b
end-function

procedure print_start
 writeln("The program starts here.")
end-procedure

procedure hide_a_1
 declarations
 a: integer
 end-declarations

 a:=7
 writeln("Procedure hide_a_1: a = ", a)
end-procedure

procedure hide_a_2(a:integer)
 writeln("Procedure hide_a_2: a = ", a)
end-procedure

procedure hide_a_3(a:integer)
 declarations
 a: integer
 end-declarations

 a := 15
 writeln("Procedure hide_a_3: a = ", a)
end-procedure

print_start
 a:=three
 writeln("a = ", a)
 a:=times_two(a)
 writeln("a = ", a)
 hide_a_1
 writeln("a = ", a)
```

Functions and procedures 48 Mosel User Guide
During the compilation we get the warning

Mosel: W-165 at (30,3) of 'subrout.mos': Declaration of 'a' hides a parameter.

This is due to the redefinition of the parameter in procedure hide_a_3. The program results in the following output:

The program starts here.
a = 3
a = 6
Procedure hide_a_1: a = 7
a = 6
Procedure hide_a_2: a = -10
a = 6
Procedure hide_a_3: a = 15
a = 6

9.3 Recursion

The following example returns the largest common divisor of two numbers, just like the example 'Lcdiv1' in the previous chapter. This time we implement this task using recursive function calls, that is, from within function lcdiv we call again function lcdiv.

model Lcdiv2

function lcdiv(A,B:integer):integer
  if(A=B) then
    returned:=A
  elif(A>B) then
    returned:=lcdiv(B,A-B)
  else
    returned:=lcdiv(A,B-A)
  end-if
end-function

declarations
A,B: integer
end-declarations

write("Enter two integer numbers:
 A: ")
readln(A)
write(" B: ")
readln(B)

writeln("Largest common divisor: ", lcdiv(A,B))
end-model

This example uses a simple recursion (a subroutine calling itself). In Mosel, it is also possible to use cross-recursion, that is, subroutine A calls subroutine B which again calls A. The only pre-requisite is that any subroutine that is called prior to its definition must be declared before it is called by using the forward statement (see below).

9.4 forward

A subroutine has to be ‘known’ at the place where it is called in a program. In the preceding examples we have defined all subroutines at the start of the programs but this may not always
be feasible or desirable. Mosel therefore enables the user to declare a subroutine separately from its definition by using the keyword forward. The declaration of a subroutine states its name, the parameters (type and name) and, in the case of a function, the type of the return value. The definition that must follow later in the program contains the body of the subroutine, that is, the actions to be executed by the subroutine.

The following example implements a quick sort algorithm for sorting a randomly generated array of numbers into ascending order. The procedure qsort that starts the sorting algorithm is defined at the very end of the program, it therefore needs to be declared at the beginning, before it is called. Procedure qsort_start calls the main sorting routine, qsort. Since the definition of this procedure precedes the place where it is called there is no need to declare it (but it still could be done). Procedure qsort calls yet again another subroutine, swap.

The idea of the quick sort algorithm is to partition the array that is to be sorted into two parts. The 'left' part containing all values smaller than the partitioning value and the 'right' part all the values that are larger than this value. The partitioning is then applied to the two subarrays, and so on, until all values are sorted.

```mosel
model "Quick sort 1"

parameters
LIM=50
end-parameters

forward procedure qsort_start(L:array(range) of integer)
declarations
T:array(1..LIM) of integer
end-declarations
forall(i in 1..LIM) T(i):=round(.5+random*LIM)
writeln(T)
qsort_start(T)
writeln(T)

! Swap the positions of two numbers in an array
procedure swap(L:array(range) of integer,i,j:integer)
k:=L(i)
L(i):=L(j)
L(j):=k
end-procedure

! Main sorting routine
procedure qsort(L:array(range) of integer,s,e:integer)
v:=L((s+e) div 2) ! Determine the partitioning value
i:=s; j:=e
repeat ! Partition into two subarrays
 while(L(i)<v) i+=1
 while(L(j)>v) j-=1
 if i<j then
 swap(L,i,j)
 i+=1; j-=1
end-if
until i>=j ! Recursively sort the two subarrays
if j<e and s<j then qsort(L,s,j); end-if
if i>s and i<e then qsort(L,i,e); end-if
end-procedure

! Start of the sorting process
procedure qsort_start(L:array(r:range) of integer)
qsort(L,getfirst(r),getlast(r))
end-procedure

end-model
```

The quick sort example above demonstrates typical uses of subroutines, namely grouping actions that are executed repeatedly (qsort) and isolating subtasks (swap) in order to structure a program and increase its readability.
The calls to the procedures in this example are nested (procedure swap is called from qsort which is called from qsort_start): in Mosel there is no limit as to the number of nested calls to subroutines (it is not possible, though, to define subroutines within a subroutine).

9.5 Overloading of subroutines

In Mosel, it is possible to re-use the names of subroutines, provided that every version has a different number and/or types of parameters. This functionality is commonly referred to as **overloading**.

An example of an overloaded function in Mosel is getsol: if a variable is passed as a parameter it returns its solution value, if the parameter is a constraint the function returns the evaluation of the corresponding linear expression using the current solution.

Function abs (for obtaining the absolute value of a number) has different return types depending on the type of the input parameter: if an integer is input it returns an integer value, if it is called with a real value as input parameter it returns a real.

Function getcoeff is an example of a function that takes different numbers of parameters: if called with a single parameter (of type linctr) it returns the constant term of the input constraint, if a constraint and a variable are passed as parameters it returns the coefficient of the variable in the given constraint.

The user may define (additional) overloaded versions of any subroutines defined by Mosel as well as for his own functions and procedures. Note that it is not possible to overload a function with a procedure and **vice versa**.

Using the possibility to overload subroutines, we may rewrite the preceding example ‘Quick sort’ as follows.

```mosel
model "Quick sort 2"
parameters
LIM=50
end-parameters
forward procedure qsort(L:array(range) of integer)
declarations
T:array(1..LIM) of integer
end-declarations
forall(i in 1..LIM) T(i):=round(.5+random*LIM)
writeln(T)
qsort(T)
writeln(T)
procedure swap(L:array(range) of integer,i,j:integer)
(...)
end-procedure
procedure qsort(L:array(range) of integer,s,e:integer)
(...)
end-procedure
! Start of the sorting process
procedure qsort(L:array(r:range) of integer)
qsort(L,getfirst(r),getlast(r))
end-procedure
end-model
```

The procedure qsort_start is now also called qsort. The procedure bearing this name in the first implementation keeps its name too; it has got two additional parameters which suffice to ensure that the right version of the procedure is called. To the contrary, it is not possible to give procedure swap the same name qsort because it takes exactly the same parameters.
as the original procedure *qsort* and hence it would not be possible to differentiate between these two procedures any more.
Chapter 10
Output

10.1 Producing formatted output

In some of the previous examples the procedures write and writeln have been used for displaying data, solution values and some accompanying text. To produce better formatted output, these procedures can be combined with the formatting procedure strfmt. In its simplest form, strfmt's second argument indicates the (minimum) space reserved for writing the first argument and its placement within this space (negative values mean left justified printing, positive right justified). When writing a real, a third argument may be used to specify the maximum number of digits after the decimal point.

For example, if file fo.mos contains

```mosel
model FO
parameters
 r = 1.0 ! A real
 i = 0 ! An integer
end-parameters
writeln("i is ", i)
writeln("i is ", strfmt(i,6))
writeln("i is ", strfmt(i,-6))
writeln("r is ", r)
writeln("r is ", strfmt(r,6))
writeln("r is ", strfmt(r,10,4))
end-model
```

and we run Mosel thus:

```bash
mosel -s -c "exec fo 'i=123, r=1.234567'"
```

we get output

```
i is 123
i is 123
i is 123
r is 1.23457
r is 1.23457
r is 1.2346
```

The following example prints out the solution of model 'Transport' (Section 3.2) in table format. The reader may be reminded that the objective of this problem is to compute the product flows from a set of plants (PLANT) to a set of sales regions (REGION) so as to minimize the total cost. The solution needs to comply with the capacity limits of the plants (PLANTCAP) and satisfy the demand DEMAND of all regions.

```mosel
procedure print_table
 declarations
 rsum: array(REGION) of integer ! Auxiliary data table for printing
```
With the data from Chapter 3 the procedure print_table produces the following output:

<table>
<thead>
<tr>
<th>Sales Region</th>
<th>Scotland</th>
<th>North</th>
<th>SWest</th>
<th>SEast</th>
<th>Midlands</th>
<th>TOTAL</th>
<th>Capacity</th>
</tr>
</thead>
<tbody>
<tr>
<td>Corby</td>
<td>180</td>
<td>1530</td>
<td>920</td>
<td>250</td>
<td>2700</td>
<td>2700</td>
<td>2700</td>
</tr>
<tr>
<td>Deeside</td>
<td>2840</td>
<td>2800</td>
<td>2600</td>
<td>2820</td>
<td>2750</td>
<td>13810</td>
<td>13810</td>
</tr>
<tr>
<td>Glasgow</td>
<td>2840</td>
<td>2840</td>
<td>2840</td>
<td>2840</td>
<td>2840</td>
<td>2840</td>
<td>2840</td>
</tr>
<tr>
<td>Oxford</td>
<td>2840</td>
<td>2840</td>
<td>2840</td>
<td>2840</td>
<td>2840</td>
<td>2840</td>
<td>2840</td>
</tr>
</tbody>
</table>

Total cost of distribution = 81.018 million.
10.2 File output

If we do not want the output of procedure `print_tab` in the previous section to be displayed on screen but to be saved in the file `out.txt`, we simply open the file for writing at the beginning of the procedure by adding

```
fopen("out.txt",F_OUTPUT)
```

before the first `writeln` statement, and close it at the end of the procedure, after the last `writeln` statement with

```
fclose(F_OUTPUT)
```

If we do not want any existing contents of the file `out.txt` to be deleted, so that the result table is appended to the end of the file, we need to write the following for opening the file (closing it the same way as before):

```
橇on("out.txt",F_OUTPUT+F_APPEND)
```

As with input of data from file, there are several ways of outputting data (e.g. solution values) to a file in Mosel. The following example demonstrates three different ways of writing the contents of an array `A` to a file.

10.2.1 Data input with initializations to

The first method uses the `initializations` block for creating or updating a file in Mosel's `initializations` format.

```
model "Trio output (1)"
declarations
 A: array(1..3,1..3) of real
end-declarations
A := [2, 4, 6,
 12, 14, 16,
 22, 24, 26]
! First method: use an initializations block
initializations to "out_1.dat"
 A as "MYOUT"
end-initializations
end-model
```

File `out_1.dat` will contain the following:

'MYOUT': [2 4 6 12 14 16 22 24 26]

If this file contains already a data entry `MYOUT`, it is replaced with this output without modifying or deleting any other contents of this file. Otherwise, the output is appended at the end of it.

10.2.2 Data output with writeln

As mentioned above, we may create freely formatted output files by redirecting the output of `write` and `writeln` statements to a file:

```
[model "Trio output (2)"
declarations
 A: array(1..3,1..3) of real
end-declarations
A := [2, 4, 6,
 12, 14, 16,
 22, 24, 26]
```

```
! Second method: use the built-in writeln function
fopen("out_2.dat", F_OUTPUT)
forall(i,j in 1..3)
 writeln("A_out('', i, ' and ', j, '') = ', A(i,j))
fclose(F_OUTPUT)
end-model

The nicely formatted output to out_2.dat results in the following:

A_out(1 and 1) = 2
A_out(1 and 2) = 4
A_out(1 and 3) = 6
A_out(2 and 1) = 12
A_out(2 and 2) = 14
A_out(2 and 3) = 16
A_out(3 and 1) = 22
A_out(3 and 2) = 24
A_out(3 and 3) = 26

10.2.3 Data output with diskdata

As a third possibility, one may use the diskdata subroutine from module mmetc to write out comma separated value (CSV) files.

[model "Trio output"
 uses "mmetc"
 declarations
 A: array(1..3,1..3) of real
 end-declarations
 A := [2, 4, 6,
 12, 14, 16,
 22, 24, 26]
 ! Third method: use diskdata
 diskdata(ETC_OUT+ETC_SPARSE,"out_3.dat", A)
end-model

The output with diskdata simply prints the contents of the array to out_3.dat, with option ETC_SPARSE each entry is preceded by the corresponding indices:

1,1,2
1,2,4
1,3,6
2,1,12
2,2,14
2,3,16
3,1,22
3,2,24
3,3,26

Without option ETC_SPARSE out_3.dat looks as follows:

2,4,6
12,14,16
22,24,26

10.3 Real number format

Whenever output is printed (including matrix export to a file) Mosel uses the standard representation of floating point numbers of the operating system (C format %g). This format may apply rounding when printing large numbers or numbers with many decimals. It may therefore sometimes be preferable to change the output format to a fixed format to see the exact results.
of an optimization run or to produce a matrix output file with greater accuracy. Consider the following example:

model "Formatting numbers"
parameters
 a = 12345000.0
 b = 12345048.9
 c = 12.000045
 d = 12.0
end-parameters
 writeln(a, " ", b, " ", c, " ", d)

setparam("REALFMT", "%1.6f")
 writeln(a, " ", b, " ", c, " ", d)
end-model

This model produces the following output.

1.2345e+07 1.2345e+07 12 12
12345000.000000 12345048.900000 12.000045 12.000000

That is, with the default printing format it is not possible to distinguish between a and b or to see that c is not an integer. After setting a fixed format with 6 decimals all these numbers are output with their exact values.
Chapter 11
More about Integer Programming

This chapter presents two applications to (Mixed) Integer Programming of the programming facilities in Mosel that have been introduced in the previous chapters.

11.1 Cut generation

Cutting plane methods add constraints (cuts) to the problem that cut off parts of the convex hull of the integer solutions, thus drawing the solution of the LP relaxation closer to the integer feasible solutions and improving the bound provided by the solution of the relaxed problem.

The Xpress-Optimizer provides automated cut generation (see the optimizer documentation for details). To show the effects of the cuts that are generated by our example we switch off the automated cut generation.

11.1.1 Example problem

The problem we want to solve is the following: a large company is planning to outsource the cleaning of its offices at the least cost. The \(NSITES \) office sites of the company are grouped into areas (set \(AREAS = \{1, \ldots, NAREAS\} \)). Several professional cleaning companies (set \(CONTR = \{1, \ldots, NCONTRACTORS\} \)) have submitted bids for the different sites, a cost of 0 in the data meaning that a contractor is not bidding for a site.

To avoid being dependent on a single contractor, adjacent areas have to be allocated to different contractors. Every site \(s \) (\(s \) in \(SITES = \{1, \ldots, NSITES\} \)) is to be allocated to a single contractor, but there may be between \(LOWCON_a \) and \(UPPCON_a \) contractors per area \(a \).

11.1.2 Model formulation

For the mathematical formulation of the problem we introduce two sets of variables:

- \(clean_{cs} \) indicates whether contractor \(c \) is cleaning site \(s \)
- \(alloc_{ca} \) indicates whether contractor \(c \) is allocated any site in area \(a \)

The objective to minimize the total cost of all contracts is as follows (where \(PRICE_{sc} \) is the price per site and contractor):

\[
\text{minimize} \quad \sum_{c \in CONTR} \sum_{s \in SITES} PRICE_{sc} \cdot clean_{cs}
\]

We need the following three sets of constraints to formulate the problem:

1. Each site must be cleaned by exactly one contractor.

\[
\forall s \in SITES : \quad \sum_{c \in CONTR} clean_{cs} = 1
\]
2. Adjacent areas must not be allocated to the same contractor.

\[\forall c \in \text{CONTR}, a, b \in \text{AREAS}, a > b \text{ and ADJACENT}_{ab} = 1 : \, alloc_{ca} + alloc_{cb} \leq 1 \]

3. The lower and upper limits on the number of contractors per area must be respected.

\[\forall a \in \text{AREAS} : \sum_{c \in \text{CONTR}} alloc_{ca} \geq LOWCON_a \]
\[\forall a \in \text{AREAS} : \sum_{c \in \text{CONTR}} alloc_{ca} \leq UPPCON_a \]

To express the relation between the two sets of variables we need more constraints: a contractor \(c \) is allocated to an area \(a \) if and only if he is allocated a site \(s \) in this area, that is, \(y_{ca} \) is 1 if and only if some \(x_{cs} \) (for a site \(s \) in area \(a \)) is 1. This equivalence is expressed by the following two sets of constraints, one for each sense of the implication (\(\text{AREA}_a \) is the area a site \(s \) belongs to and \(\text{NUMSITE}_a \) the number of sites in area \(a \)):

\[\forall c \in \text{CONTR}, a \in \text{AREAS} : alloc_{ca} \leq \sum_{s \in \text{SITES} \text{AREA}_s = a} clean_{cs} \]
\[\forall c \in \text{CONTR}, a \in \text{AREAS} : alloc_{ca} \geq \frac{1}{\text{NUMSITE}_a} \sum_{s \in \text{SITES} \text{AREA}_s = a} clean_{cs} \]

11.1.3 Implementation

The resulting Mosel program is the following. The variables \(clean_{cs} \) are defined as a dynamic array and are only created if contractor \(c \) bids for site \(s \) (that is, \(\text{PRICE}_{sc} > 0 \) or, taking into account inaccuracies in the data, \(\text{PRICE}_{sc} > 0.01 \)).

Another implementation detail that the reader may notice is the separate initialization of the array sizes: we are thus able to create all arrays with fixed sizes (with the exception of the previously mentioned array of variables that is explicitly declared dynamic). This allows Mosel to handle them in a more efficient way.

```mosel
model "Office cleaning"
uses "mmxprs","mmsystem"
declarations
  PARAM: array(1..3) of integer
end-declarations
initializations from 'clparam.dat'
PARAM
end-initializations
declarations
  NSITES  = PARAM(1) ! Number of sites
  NAREAS  = PARAM(2) ! Number of areas (subsets of sites)
  NCONTRACTORS  = PARAM(3) ! Number of contractors
  AREAS  = 1..NAREAS
  CONTR  = 1..NCONTRACTORS
  SITES  = 1..NSITES
  AREA: array(SITES) of integer ! Area site is in
  NUMSITE: array(AREAS) of integer ! Number of sites in an area
  LOWCON: array(AREAS) of integer ! Lower limit on the number of contractor per area
  UPPCON: array(AREAS) of integer ! Upper limit on the number of contractors per area
  ADJACENT: array(AREAS,AREAS) of integer ! 1 if areas adjacent, 0 otherwise
  PRICE: array(SITES,CONTR) of real ! Price per contractor per site
  clean: dynamic array(CONTR,SITES) of mpvar ! 1 iff contractor c cleans site s
  alloc: array(CONTR,AREAS) of mpvar ! 1 iff contractor allocated to a site in area a

```

More about Integer Programming 59 Mosel User Guide
end-declarations

initializations from 'cldata.dat'
[NUMSITE,LOWCON,UPPCON] as 'AREA'
ADJACENT
PRICE
end-initializations

ct:=1
forall(a in AREAS) do
forall(s in ct..ct+NUMSITE(a)-1)
 AREA(s):=a
ct+= NUMSITE(a)
end-do
forall(c in CONTR, s in SITES | PRICE(s,c) > 0.01) create(clean(c,s))

! Objective: Minimize total cost of all cleaning contracts
Cost:= sum(c in CONTR, s in SITES) PRICE(s,c) * clean(c,s)

! Each site must be cleaned by exactly one contractor
forall(s in SITES) sum(c in CONTR) clean(c,s) = 1

! Ban same contractor from serving adjacent areas
forall(c in CONTR, a,b in AREAS | a > b and ADJACENT(a,b) = 1)
 alloc(c,a) + alloc(c,b) <= 1

! Specify lower & upper limits on contracts per area
forall(a in AREAS | LOWCON(a)>0)
 sum(c in CONTR) alloc(c,a) >= LOWCON(a)
forall(a in AREAS | UPPCON(a)<NCONTRACTORS)
 sum(c in CONTR) alloc(c,a) <= UPPCON(a)

! Define alloc(c,a) to be 1 iff some clean(c,s)=1 for sites s in area a
forall(c in CONTR, a in AREAS) do
forall(s in SITES | AREA(s)=a)
 alloc(c,a) >= 1.0/NUMSITE(a) * sum(s in SITES | AREA(s)=a) clean(c,s)
end-do
forall(c in CONTR) do
forall(s in SITES) clean(c,s) is_binary
forall(a in AREAS) alloc(c,a) is_binary
end-do
minimize(Cost) ! Solve the MIP problem
end-model

In the preceding model, we have chosen to implement the constraints that force the variables \(alloc_a \) to become 1 whenever a variable \(clean_s \) is 1 for some site \(s \) in area \(a \) in an aggregated way (this type of constraint is usually referred to as Multiple Variable Lower Bound, MVLB, constraints). Instead of

\[
forall(c \text{ in CONTR}, a \text{ in AREAS}) \\
alloc(c,a) >= 1.0/\text{NUMSITE}(a) * \sum(s \text{ in SITES} | \text{AREA}(s)=a) \text{ clean}(c,s)
\]

we could also have used the stronger formulation

\[
forall(c \text{ in CONTR}, s \text{ in SITES}) \\
alloc(c,\text{AREA}(s)) >= \text{clean}(c,s)
\]

but this considerably increases the total number of constraints. The aggregated constraints are sufficient to express this problem, but this formulation is very loose, with the consequence that the solution of the LP relaxation only provides a very bad approximation of the integer solution that we want to obtain. For large data sets the Branch-and-Bound search may therefore take a long time.
11.1.4 Cut-and-Branch

To improve this situation without blindly adding many unnecessary constraints, we implement a cut generation loop at the top node of the search that only adds those constraints that are violated by the current LP solution.

The cut generation loop (procedure top_cut_gen) performs the following steps:

- solve the LP and save the basis
- get the solution values
- identify violated constraints and add them to the problem
- load the modified problem and load the previous basis

```mosel
procedure top_cut_gen
declarations
MAXCUTS = 2500 ! Max no. of constraints added in total
MAXPCUTS = 1000 ! Max no. of constraints added per pass
MAXPASS = 50 ! Max no. of passes
ncut, npass, npcut: integer ! Counters for cuts and passes
feastol: real ! Zero tolerance
solc: array(CONTR,SITES) of real ! Sol. values for variables 'clean'
sola: array(CONTR,AREAS) of real ! Sol. values for variables 'alloc'
objval,starttime: real

starttime:=gettime
setparam("XPRS_CUTSTRATEGY", 0) ! Disable automatic cuts
setparam("XPRS_PRESOLVE", 0) ! Switch presolve off
feastol:= getparam("XPRS_FEASTOL") ! Get the Optimizer zero tolerance
setparam("ZEROTOL", feastol * 10) ! Set the comparison tolerance of Mosel
ncut:=0
npass:=0

while (ncut<MAXCUTS and npass<MAXPASS) do
  npass:=npass+1
  npcut:= 0
  minimize(XPRS_LIN, Cost) ! Solve the LP
  if (npass>1 and objval=getobjval) then break; end-if
  savebasis(1) ! Save the current basis
  objval:= getobjval ! Get the objective value
  forall(c in CONTR) do ! Get the solution values
    forall(a in AREAS) sola(c,a):=getsol(alloc(c,a))
    forall(s in SITES) solc(c,s):=getsol(clean(c,s))
  end-do
  writeln("Pass ", npass, " (", gettime-starttime, " sec), objective value ",
          objval, ", cuts added: ", npcut, " (total ", ncut,"))

  ! Search for violated constraints and add them to the problem:
  forall(c in CONTR, s in SITES)
    if solc(c,s) > sola(c,AREA(s)) then
      cut(ncut):= alloc(c,AREA(s)) >= clean(c,s)
      ncut:=ncut+1
    end-if
  end-do

  if (ncut>MAXPCUTS or ncut>MAXCUTS) then break 2; end-if
end-do

! Display cut generation status
writeln("Cut phase completed: ")
```

More about Integer Programming 61 Mosel User Guide
if (ncut >= MAXCUTS) then writeln("space for cuts exhausted")
eelif (npass >= MAXPASS) then writeln("maximum number of passes reached")
else writeln("no more violations or no improvement to objective")
end-if
end-procedure

Assuming we add the definition of procedure top_cut_gen to the end of our model, we need to add its declaration at the beginning of the model:

forward procedure topcutgen

and the call to this function immediately before the optimization:

top_cut_gen ! Constraint generation at top node
minimize(Cost) ! Solve the MIP problem

Since we wish to use our own cut strategy, we switch off the default cut generation in Xpress-Optimizer:

setparam("XPRS_CUTSTRATEGY", 0)

We also turn the presolve off since we wish to access the solution to the original problem after solving the LP-relaxations:

setparam("XPRS_PRESOLVE", 0)

11.1.5 Comparison tolerance

In addition to the parameter settings we also retrieve the feasibility tolerance used by Xpress-Optimizer: the Optimizer works with tolerance values for integer feasibility and solution feasibility that are typically of the order of 10^{-6} by default. When evaluating a solution, for instance by performing comparisons, it is important to take into account these tolerances.

After retrieving the feasibility tolerance of the Optimizer we set the comparison tolerance of Mosel (ZEROTOL) to this value. This means, for example, the test $x = 0$ evaluates to true if x lies between -ZEROTOL and ZEROTOL, $x \leq 0$ is true if the value of x is at most ZEROTOL, and $x > 0$ is fulfilled if x is greater than ZEROTOL.

Comparisons in Mosel always use a tolerance, with a very small default value. By resetting this parameter to the Optimizer feasibility tolerance Mosel evaluates solution values just like the Optimizer.

11.1.6 Branch-and-Cut

The cut generation loop presented in the previous subsection only generates violated inequalities at the top node before entering the Branch-and-Bound search and adds them to the problem in the form of additional constraints. We may do the same using the cut manager of Xpress-Optimizer. In this case, the violated constraints are added to the problem via the cut pool. We may even generate and add cuts during the Branch-and-Bound search. A cut added at a node using addcuts only applies to this node and its descendants, so one may use this functionality to define local cuts (however, in our example, all generated cuts are valid globally).

The cut manager is set up with a call to procedure tree_cut_gen before starting the optimization (preceded by the declaration of the procedure using forward earlier in the program). To avoid initializing the solution arrays and the feasibility tolerance repeatedly, we now turn these into globally defined objects:

declarations
feastol: real ! Zero tolerance
solk: array(CONTR,SITES) of real ! Sol. values for variables 'clean'
sola: array(CONTR,AREAS) of real ! Sol. values for variables 'alloc'
end-declarations
As we have seen before, procedure `tree_cut_gen` disables the default cut generation and turns presolve off. It also indicates the number of extra rows to be reserved in the matrix for the cuts we are generating:

```mosel
procedure tree_cut_gen
    setparam("XPRS_CUTSTRATEGY", 0) ! Disable automatic cuts
    setparam("XPRS_PRESOLVE", 0) ! Switch presolve off
    setparam("XPRS_EXTRAROWS", 5000) ! Reserve extra rows in matrix
    feastol:= getparam("XPRS_FEASTOL") ! Get the zero tolerance
    setparam("zerotol", feastol * 10) ! Set the comparison tolerance of Mosel
    setcallback(XPRS_CB_CM, "cb_node")
end-procedure
```

The last line of this procedure defines the cut manager entry callback function that will be called by the optimizer from every node of the Branch-and-Bound search tree. This cut generation routine (function `cb_node`) performs the following steps:

- get the solution values
- identify violated inequalities and add them to the problem

It is implemented as follows (we restrict the generation of cuts to the first three levels, i.e. depth <4, of the search tree):

```mosel
public function cb_node:boolean
    declarations
        ncut: integer ! Counters for cuts
        cut: array(range) of linctr ! Cuts
        cutid: array(range) of integer ! Cut type identification
        type: array(range) of integer ! Cut constraint type
    end-declarations

    returned:=false ! Call this function once per node
    depth:=getparam("XPRS_NODEDEPTH")
    node:=getparam("XPRS_NODES")
    if depth<4 then
        ncut:=0
        ! Get the solution values
        setparam("XPRS_SOLUTIONFILE",0)
        forall(c in CONTR) do
            forall(a in AREAS) sola(c,a):=getsol(alloc(c,a))
            forall(s in SITES) solc(c,s):=getsol(clean(c,s))
        end-do
        setparam("XPRS_SOLUTIONFILE",1)
        ! Search for violated constraints
        forall(c in CONTR, s in SITES)
            if solc(c,s) > sola(c,AREA(s)) then
                cut(ncut):= alloc(c,AREA(s)) - clean(c,s)
                cutid(ncut):= 1
                type(ncut):= CT_GEQ
                ncut+=1
            end-if
        ! Add cuts to the problem
        if ncut>0 then
            returned:=true ! Call this function again
            addcuts(cutid, type, cut);
            writeln("Cuts added : ", ncut, " (depth ", depth, ", node ", node,
```
The prototype of this function is prescribed by the type of the callback (see the Xpress-Optimizer Reference Manual and the chapter on mmxprs in the Mosel Language Reference Manual). We declare the function as public to make sure that our model continues to work if it is compiled with the -s (strip) option. At every node this function is called repeatedly, followed by a re-solution of the current LP, as long as it returns true.

Remark: if one wishes to access the solution values in a callback function, the Xpress-Optimizer parameter XPRS_SOLUTIONFILE must be set to 0 before getting the solution and after getting the solutions it must be set back to 1.

11.2 Column generation

The technique of column generation is used for solving linear problems with a huge number of variables for which it is not possible to generate explicitly all columns of the problem matrix. Starting with a very restricted set of columns, after each solution of the problem a column generation algorithm adds one or several columns that improve the current solution. These columns must have a negative reduced cost (in a minimization problem) and are calculated based on the dual value of the current solution.

For solving large MIP problems, column generation typically has to be combined with a Branch-and-Bound search, leading to a so-called Branch-and-Price algorithm. The example problem described below is solved by solving a sequence of LPs without starting a tree search.

11.2.1 Example problem

A paper mill produces rolls of paper of a fixed width MAXWIDTH that are subsequently cut into smaller rolls according to the customer orders. The rolls can be cut into NWIDTHS different sizes. The orders are given as demands for each width i (DEMANDi). The objective of the paper mill is to satisfy the demand with the smallest possible number of paper rolls in order to minimize the losses.

11.2.2 Model formulation

The objective of minimizing the total number of rolls can be expressed as choosing the best set of cutting patterns for the current set of demands. Since it may not be obvious how to calculate all possible cutting patterns by hand, we start off with a basic set of patterns (PATTERNS1, ..., PATTERNSNWIDTH), that consists of cutting small rolls all of the same width as many times as possible out of the large roll. This type of problem is called a cutting stock problem.

If we define variables usej to denote the number of times a cutting pattern j (j ∈ WIDTHS = {1, ..., NWIDTH}) is used, then the objective becomes to minimize the sum of these variables, subject to the constraints that the demand for every size has to be met.

\[
\text{minimize } \sum_{j \in \text{WIDTHS}} \text{use}_j \\
\sum_{j \in \text{WIDTHS}} \text{PATTERNS}_{ij} \cdot \text{use}_j \geq \text{DEMAND}_i \\
\forall j \in \text{WIDTHS} : \text{use}_j \leq \text{ceil}(\text{DEMAND}_j / \text{PATTERNS}_{ij}), \text{use}_j \in \mathbb{N}
\]

Function ceil means rounding to the next larger integer value.
11.2.3 Implementation

The first part of the Mosel model implementing this problem looks as follows:

```mosel
model Papermill
uses "mmxprs"

forward procedure column_gen
forward function knapsack(C:array(range) of real, A:array(range) of real,
B:real, xbest:array(range) of integer,
pass: integer): real
forward procedure show_new_pat(dj:real, vx: array(range) of integer)
declarations
NWIDTHS = 5 ! Number of different widths
WIDTHS = 1..NWIDTHS ! Range of widths
RP: range ! Range of cutting patterns
MAXWIDTH = 94 ! Maximum roll width
EPS = 1e-6 ! Zero tolerance
WIDTH: array(WIDTHS) of real ! Possible widths
DEMAND: array(WIDTHS) of integer ! Demand per width
PATTERNS: array(WIDTHS,WIDTHS) of integer ! (Basic) cutting patterns
use: array(RP) of mpvar ! Rolls per pattern
soluse: array(RP) of real ! Solution values for variables ‘use’
Dem: array(WIDTHS) of linctr ! Demand constraints
MinRolls: linctr ! Objective function
KnapCtr, KnapObj: linctr ! Knapsack constraint+objective
x: array(WIDTHS) of mpvar ! Knapsack variables
end-declarations

WIDTH:= [ 17, 21, 22.5, 24, 29.5]
DEMAND:= [150, 96, 48, 108, 227]

forall(j in WIDTHS) PATTERNS(j,j) := floor(MAXWIDTH/WIDTH(j))
forall(j in WIDTHS) do
create(use(j)) ! Create NWIDTHS variables ‘use’
use(j) is_integer ! Variables are integer and bounded
use(j) <= integer(ceild(DEMAND(j)/PATTERNS(j,j)))
end-do

MinRolls:= sum(j in WIDTHS) use(j) ! Objective: minimize no. of rolls
forall(i in WIDTHS) ! Satisfy all demands
Dem(i):= sum(j in WIDTHS) PATTERNS(i,j) * use(j) >= DEMAND(i)

column_gen ! Column generation at top node
minimize(MinRolls)
 writeln("Best integer solution: ", getobjval, " rolls")
write(" Rolls per pattern: ")
forall(i in RP) write(getsol(use(i))),", ")
```

The paper mill can satisfy the demand with just the basic set of cutting patterns, but it is likely to incur significant losses through wasting more than necessary of every large roll and by cutting more small rolls than its customers have ordered. We therefore employ a column generation heuristic to find more suitable cutting patterns.

The following procedure `column_gen` defines a column generation loop that is executed at the top node (this heuristic was suggested by M. Savelsbergh for solving a similar cutting stock problem). The column generation loop performs the following steps:

- solve the LP and save the basis
- get the solution values
• compute a more profitable cutting pattern based on the current solution
• generate a new column (= cutting pattern): add a term to the objective function and to the corresponding demand constraints
• load the modified problem and load the saved basis

To be able to increase the number of variables use, in this function, these variables have been declared at the beginning of the program as a dynamic array without specifying any index range.

By setting Mosel’s comparison tolerance to \(EPS \), the test \(z_{best} = 0 \) checks whether \(z_{best} \) lies within \(EPS \) of 0 (see explanation in Section 11.1).

```mosel
procedure column_gen
declarations
dualdem: array(WIDTHS) of real
xbest: array(WIDTHS) of integer
dw, zbest, objval: real
end-declarations

defcut:=getparam("XPRS_CUTSTRATEGY") ! Save setting of 'CUTSTRATEGY'
setparam("XPRS_CUTSTRATEGY", 0) ! Disable automatic cuts
setparam("XPRS_PRESOLVE", 0) ! Switch presolve off
setparam("zerotol", EPS) ! Set comparison tolerance of Mosel
npatt:=NWIDTHS
npass:=1

while(true) do
    minimize(XPRS_LIN, MinRolls) ! Solve the LP
    savebasis(1) ! Save the current basis
    objval:= getobjval ! Get the objective value
    
    forall(j in 1..npatt) soluse(j):=getsol(use(j)) ! Get the solution values
    forall(i in WIDTHS) dualdem(i):=getdual(Dem(i)) ! Solve a knapsack problem
    zbest:= knapsack(dualdem, WIDTH, MAXWIDTH, xbest, npass) - 1.0
    write("Pass ", npass, ": ")
    if zbest = 0 then
        writeln("no profitable column found.
"")
        break
    else
        show_new_pat(zbest, xbest) ! Print the new pattern
        npatt+=1
        create(use(npatt)) ! Create a new var. for this pattern
        use(npatt) is_integer
        MinRolls+= use(npatt) ! Add new var. to the objective
        dw:=0
        forall(i in WIDTHS)
        if xbest(i) > 0 then
            Dem(i):= xbest(i)*use(npatt) ! Add new var. to demand constr.s
            dw:= maxlist(dw, ceil(DEMAND(i)/xbest(i)) )
        end-if
        use(npatt) <= dw ! Set upper bound on the new var.
        endif
        loadprob(MinRolls) ! Reload the problem
        loadbasis(1) ! Load the saved basis
        end-if
        npass+=1
    end-if
    npass+=1
end-do

writeln("Solution after column generation: ", objval, " rolls, ", getsize(RP), " patterns")
write(" Rolls per pattern: ")
forall(i in RP) write(soluse(i),", ")
writeln
```

More about Integer Programming 66 Mosel User Guide
The preceding procedure column_gen calls the following auxiliary function knapsack to solve an integer knapsack problem of the form

\[
\begin{align*}
\text{maximize } & \quad z = \sum_{j \in \text{WIDTHS}} C_j \cdot x_j \\
\text{s.t. } & \quad \sum_{j \in \text{WIDTHS}} A_j \cdot x_j \leq B \\
& \quad \forall j \in \text{WIDTHS} : x_j \text{ integer}
\end{align*}
\]

The function knapsack solves a second optimization problem that is independent of the main, cutting stock problem since the two have no variables in common. We thus effectively work with two problems in a single Mosel model.

For efficiency reasons we have defined the knapsack variables and constraints globally. The integrality condition on the knapsack variables remains unchanged between several calls to this function, so we establish it when solving the first knapsack problem. On the other hand, the knapsack constraint and the objective function have different coefficients at every execution, so we need to replace them every time the function is called.

We reset the knapsack constraints to 0 at the end of this function so that they do not unnecessarily increase the size of the main problem. The same is true in the other sense: hiding the demand constraints while solving the knapsack problem makes life easier for the optimizer, but is not essential for getting the correct solution.

To complete the model, we add the following procedure show_new_pat to print every new pattern we find.
write(WIDTH(i), ":", vx(i), ":")
dw += WIDTH(i)*vx(i)
end-do
writeln("Total width: ", dw)
end-procedure

dend-model
Chapter 12
Extensions to Linear Programming

The two examples (recursion and Goal Programming) in this chapter show how Mosel can be used to implement extensions of Linear Programming.

12.1 Recursion

Recursion, more properly known as *Successive Linear Programming*, is a technique whereby LP may be used to solve certain non-linear problems. Some coefficients in an LP problem are defined to be functions of the optimal values of LP variables. When an LP problem has been solved, the coefficients are re-evaluated and the LP re-solved. Under some assumptions this process may converge to a local (though not necessarily a global) optimum.

12.1.1 Example problem

Consider the following financial planning problem: We wish to determine the yearly interest rate \(x \) so that for a given set of payments we obtain the final balance of 0. Interest is paid quarterly according to the following formula:

\[
\text{interest}_t = \frac{92}{365} \cdot \text{balance}_t \cdot \text{interest}, ate
\]

The balance at time \(t \) (\(t = 1, \ldots, T \)) results from the balance of the previous period \(t - 1 \) and the net of payments and interest:

\[
\text{net}_t = \text{Payments}_t - \text{interest}_t,
\]

\[
\text{balance}_t = \text{balance}_{t-1} - \text{net}_t
\]

12.1.2 Model formulation

This problem cannot be modeled just by LP because we have the \(T \) products

\[
\text{balance}_t \cdot \text{interest}, ate
\]

which are non-linear. To express an approximation of the original problem by LP we replace the interest rate variable \(x \) by a (constant) guess \(X \) of its value and a deviation variable \(dx \)

\[
x = X + dx
\]

The formula for the quarterly interest payment \(i_t \) therefore becomes

\[
\text{interest}_t = \frac{92}{365} \cdot (\text{balance}_{t-1} \cdot x) = \frac{92}{365} \cdot (\text{balance}_{t-1} \cdot (X + dx)) = \frac{92}{365} \cdot (\text{balance}_{t-1} \cdot X + \text{balance}_{t-1} \cdot dx)
\]
where \(balance_t\) is the balance at the beginning of period \(t\).

We now also replace the balance \(balance_{t-1}\) in the product with \(dx\) by a guess \(B_{t-1}\) and a deviation \(db_{t-1}\)

\[
\begin{align*}
 interest_t &= \frac{92}{365} \cdot (balance_{t-1} \cdot X + (B_{t-1} + db_{t-1}) \cdot dx) \\
 &= \frac{92}{365} \cdot (balance_{t-1} \cdot X + B_{t-1} \cdot dx + db_{t-1} \cdot dx)
\end{align*}
\]

which can be approximated by dropping the product of the deviation variables

\[
 interest_t = \frac{92}{365} \cdot (balance_{t-1} \cdot X + B_{t-1} \cdot dx)
\]

To ensure feasibility we add penalty variables \(eplus_t\) and \(eminus_t\) for positive and negative deviations in the formulation of the constraint:

\[
 interest_t = \frac{92}{365} \cdot (balance_{t-1} \cdot X + B_{t-1} \cdot dx + eplus_t - eminus_t)
\]

The objective of the problem is to get feasible, that is to minimize the deviations:

\[
\text{minimize } \sum_{t \in QUARTERS} (eplus_t + eminus_t)
\]

12.1.3 Implementation

The Mosel model then looks as follows (note the balance variables \(balance_t\) as well as the deviation \(dx\) and the quarterly nets \(net_t\) are defined as free variables, that is, they may take any values between minus and plus infinity):

```mosel
model Recurse
uses "mmxprs"
forward procedure solve_recurse

declarations
T=6 ! Time horizon
QUARTERS=1..T ! Range of time periods
P,R,V: array(QUARTERS) of real ! Payments
B: array(QUARTERS) of real ! Initial guess as to balances b(t)
X: real ! Initial guess as to interest rate x
interest: array(QUARTERS) of mpvar ! Interest
net: array(QUARTERS) of mpvar ! Net
balance: array(QUARTERS) of mpvar ! Balance
x: mpvar ! Interest rate
dx: mpvar ! Change to x
eplus, eminus: array(QUARTERS) of mpvar ! + and - deviations
end-declarations

X:= 0.00
B:= [1, 1, 1, 1, 1, 1]
P:= [-1000, 0, 0, 0, 0, 0]
R:= [206.6, 206.6, 206.6, 206.6, 206.6, 0]
V:= [-2.95, 0, 0, 0, 0, 0]

forall(t in QUARTERS) net(t) = (P(t)+R(t)+V(t)) - interest(t) ! net = payments - interest
forall(t in QUARTERS) balance(t) = if(t>1, balance(t-1), 0) - net(t) ! Money balance across periods
forall(t in 2..T) Interest(t):= -(365/92)*interest(t) + X*balance(t-1) + B(t-1)*dx + eplus(t) - eminus(t) = 0 ! Approximation of interest
Def:= X + dx = x ! Define the interest rate: x = X + dx
Feas:= sum(t in QUARTERS) (eplus(t)+eminus(t)) ! Objective: get feasible

solve_recurse
end
```

Extensions to Linear Programming 70 Mosel User Guide
interest(1) = 0 ! Initial interest is zero
forall (t in QUARTERS) net(t) is_free
forall (t in 1..T-1) balance(t) is_free
balance(T) = 0 ! Final balance is zero
dx is_free
minimize(Feas) ! Solve the LP-problem
solve_recurse ! Recursion loop
! Print the solution
writeln("The interest rate is ", getsol(x))
write(strfmt("t",5), strfmt(" ",4))
forall(t in QUARTERS) write(strfmt(t,5), strfmt(" ",3))
write("Balances ")
forall(t in QUARTERS) write(strfmt(getsol(balance(t)),8,2))
write("Interest ")
forall(t in QUARTERS) write(strfmt(getsol(interest(t)),8,2))
end-model

In the model above we have declared the procedure solve_recurse that executes the recursion but it has not yet been defined. The recursion on x and the balance, (t = 1, ..., T − 1) is implemented by the following steps:

(a) The Bt−1 in constraints Interest, get the prior solution value of balance(t−1)
(b) The X in constraints Interest, get the prior solution value of x
(c) The X in constraint Def gets the prior solution value of x

We say we have converged when the change in dx (variation) is less than 0.000001 (TOLERANCE). By setting Mosel’s comparison tolerance to this value the test variation > 0 checks whether variation is greater than TOLERANCE.

procedure solve_recurse
declarations
TOLERANCE=0.000001 ! Convergence tolerance
variation: real ! Variation of x
BC: array(QUARTERS) of real
end-declarations
setparam("zerotol", TOLERANCE) ! Set Mosel comparison tolerance
variation:=1.0
ct:=0
while(variation>0) do
savebasis(1) ! Save the current basis
c:=c+1
forall(t in 2..T) ! Get solution values for balance(t)’s
BC(t-1):= getsol(balance(t-1)) ! and x
XC:= getsol(x)
write("Round ", ct, " : x ": getsol(x), " (variation:" variation,"), ")
writeln("Simplex iterations: ", getparam("XPRS_SIMPLEXITER"))
forall(t in 2..T) do ! Update coefficients
Interest(t):= (BC(t-1)-B(t-1))*dx
B(t-1):=BC(t-1)
end-do
Def:= XC-X
X:=XC
oldxval:=XC ! Store solution value of x
loadprob(Feas) ! Reload the problem into the optimizer
loadbasis(1) ! Reload previous basis
minimize(Feas) ! Re-solve the LP-problem
variation:= abs(getsol(x)-oldxval) ! Change in dx
end-do
end-procedure
With the initial guesses 0 for X and 1 for all B, the model converges to an interest rate of 5.94413%

\(x = 0.0594413 \).

12.2 Goal Programming

Goal Programming is an extension of Linear Programming in which targets are specified for a set of constraints. In Goal Programming there are two basic models: the pre-emptive (lexicographic) model and the Archimedian model. In the pre-emptive model, goals are ordered according to priorities. The goals at a certain priority level are considered to be infinitely more important than the goals at the next level. With the Archimedian model weights or penalties for not achieving targets must be specified, and we attempt to minimize the sum of the weighted infeasibilities.

If constraints are used to construct the goals, then the goals are to minimize the violation of the constraints. The goals are met when the constraints are satisfied.

The example in this section demonstrates how Mosel can be used for implementing post-emptive Goal Programming with constraints. We try to meet as many goals as possible, taking them in priority order.

12.2.1 Example problem

The objective is to solve a problem with two variables \(x \) and \(y \) (\(x, y \geq 0 \)), the constraint

\[
100 \cdot x + 60 \cdot y \leq 600
\]

and the three goal constraints

\[
\begin{align*}
\text{Goal}_1 & : 7 \cdot x + 3 \cdot y \geq 40 \\
\text{Goal}_2 & : 10 \cdot x + 5 \cdot y = 60 \\
\text{Goal}_3 & : 5 \cdot x + 4 \cdot y \geq 35
\end{align*}
\]

where the order given corresponds to their priorities.

12.2.2 Implementation

To increase readability, the implementation of the Mosel model is organized into three blocks: the problem is stated in the main part, procedure \texttt{preemptive} implements the solution strategy via preemptive Goal Programming, and procedure \texttt{print_sol} produces a nice solution printout.

```mosel
model GoalCtr
  uses "mmxprs"

forward procedure preemptive
forward procedure print_sol(i:integer)

declarations
  NGOALS=3 ! Number of goals
  x,y: mpvar ! Decision variables
  dev: array(1..2*NGOALS) of mpvar ! Deviation from goals
  MinDev: linctr ! Objective function
  Goal: array(1..NGOALS) of linctr ! Goal constraints
end-declarations

100*x + 60*y <= 600 ! Define a constraint
! Define the goal constraints
Goal(1):= 7*x + 3*y >= 40
Goal(2):= 10*x + 5*y = 60
Goal(3):= 5*x + 4*y >= 35

preemptive ! Pre-emptive Goal Programming
```

Extensions to Linear Programming

72

Mosel User Guide
At the end of the main part, we call procedure preemptive to solve this problem by preemptive Goal Programming. In this procedure, the goals are at first entirely removed from the problem ('hidden'). We then add them successively to the problem and re-solve it until the problem becomes infeasible, that is, the deviation variables forming the objective function are not all 0. Depending on the constraint type (obtained with gettype) of the goals, we need one (for inequalities) or two (for equalities) deviation variables.

Let us have a closer look at the first goal (Goal1), a \geq constraint: the left hand side (all terms with decision variables) must be at least 40 to satisfy the constraint. To ensure this, we add a dev_2. The goal constraint becomes $7 \cdot x + 3 \cdot y + dev_2 \geq 40$ and the objective function is to minimize dev_2. If this is feasible (0-valued objective), then we remove the deviation variable from the goal, thus turning it into a hard constraint. It is not required to remove it from the objective since minimization will always force this variable to take the value 0.

We then continue with Goal2: since this is an equation, we need variables for positive and negative deviations, dev_3 and dev_4. We add $dev_4 - dev_3$ to the constraint, turning it into $10 \cdot x + 5 \cdot y + dev_4 - dev_3 = 60$ and the objective now is to minimize the absolute deviation $dev_4 + dev_3$. And so on.

```
procedure preemptive
  ! Remove (=hide) goal constraint from the problem
  forall(i in 1..NGOALS) sethidden(Goal(i), true)
  i:=0
  while (i<NGOALS) do
    i+=1
    sethidden(Goal(i), false) ! Add (=unhide) the next goal
    case gettype(Goal(i)) of
      CT_GEQ: do
        Deviation:= dev(2*i)
        MinDev += Deviation
      end-do
      CT_LEQ: do
        Deviation:= -dev(2*i-1)
        MinDev += dev(2*i-1)
      end-do
      CT_EQ : do
        Deviation:= dev(2*i) - dev(2*i-1)
        MinDev += dev(2*i) + dev(2*i-1)
      end-do
      else writeln("Wrong constraint type")
        break
      end-case
      Goal(i)+= Deviation
    minimize(MinDev) ! Solve the LP-problem
    writeln(" Solution(" , i,"): x: ", getsol(x), ", y: ", getsol(y))
    if getobjval>0 then
      writeln("Cannot satisfy goal ",i)
      break
    end-if
    Goal(i)+= Deviation ! Remove deviation variable(s) from goal
  end-do
  print_sol(i) ! Solution printout
end-procedure
```

The procedure sethidden(c:linctr, b:boolean) has already been used in the previous chapter (Section 11.2) without giving any further explanation. With this procedure, constraints can be removed ('hidden') from the problem solved by the optimizer without deleting them in the problem definition. So effectively, the optimizer solves a subproblem of the problem originally stated in Mosel.

To complete the model, below is the procedure print_sol for printing the results.
procedure print_sol(i:integer)
declarations
STypes={CT_GEQ, CT_LEQ, CT_EQ}
ATypes: array(STypes) of string
end-declarations

ATypes:=[*>=", "<="", "+="]}

writeln(" Goal", strfmt("Target",11), strfmt("Value",7))
forall(g in 1..i)
 writeln(strfmt(g,4), strfmt(ATypes(gettype(Goal(g))));4),
 strfmt(-getcoeff(Goal(g));6),
 strfmt(getact(Goal(g))-getsol(dev(2 * g))+getsol(dev(2 * g-1)) ,8))
forall(g in 1..NGOALS)
 if (getsol(dev(2 * g))-0) then
 writeln(" Goal("g,"") deviation from target: ", getsol(dev(2 * g)))
 elseif (getsol(dev(2 * g-1)-0) then
 writeln(" Goal("g,"") deviation from target: ", getsol(dev(2 * g-1)))
 end-if
end-procedure

end-model

When running the program, one finds that the first two goals can be satisfied, but not the third.
III. Working with the Mosel libraries
Overview

Whilst the two previous parts have shown how to work with the Mosel Language, this part introduces the programming language interface of Mosel in the form of the Mosel C libraries. The C interface is provided in the form of two libraries; it may especially be of interest to users who

- want to integrate models and/or solution algorithms written with Mosel into some larger system
- want to (re)use already existing parts of algorithms written in C
- want to interface Mosel with other software, for instance for graphically displaying results.

Other programming language interfaces available for Mosel are its Java and Visual Basic interfaces. They will be introduced with the help of small examples.

All these programming language interfaces only enable the user to access models, but not to modify them. The latter is only possible with the Mosel Native Interface. Even more importantly, the Native Interface makes it possible to add new constants, types, and subroutines to the Mosel Language. For more detail the reader is referred to the Native Interface user guide that is provided as a separate document. The Mosel Native Interface requires an additional licence.
This chapter gives an introduction to the C interface of Mosel. It shows how to execute models from C and how to access modeling objects from C. It is not possible to make changes to Mosel modeling objects from C using this interface, but the data and parameters used by a model may be modified via files or run time parameters.

13.1 Basic tasks

To work with a Mosel model, in the C language or with the command line interpreter, it always needs to be compiled, then loaded into Mosel and executed. In this section we show how to perform these basic tasks in C.

13.1.1 Compiling a model in C

The following example program shows how Mosel is initialized in C, and how a model file (extension .mos) is compiled into a binary model (BIM) file (extension .bim). To use the Mosel Model Compiler Library, we need to include the header file xprm_mc.h at the start of the C program.

For the sake of readability, in this program, as for all others in this chapter, we only implement a rudimentary testing for errors.

```c
#include <stdlib.h>
#include "xprm_mc.h"

int main()
{
    if(XPRMinit()) /* Initialize Mosel */
        return 1;
    if(XPRMcompmod(NULL, "burglar2.mos", NULL, "Knapsack example"))
        return 2; /* Compile the model burglar2.mos, output the file burglar2.bim */
    return 0;
}
```

With version 1.4 of Mosel it becomes possible to redirect the BIM file that is generated by the compilation. Instead of writing it out to a physical file it may, for instance, be kept in memory or be written out in compressed format. The interested reader is refered to the whitepaper Generalized file handling in Mosel.

13.1.2 Executing a model in C

The example in this section shows how a Mosel binary model file (BIM) can be executed in C. The BIM file can of course be generated within the same program where it is executed, but here we leave out this step. A BIM file is an executable version of a model, but it does not
include any data that is read in by the model from external files. It is portable, that is, it may be executed on a different type of architecture than the one it has been generated on. A BIM file produced by the Mosel compiler first needs to be loaded into Mosel (function `XPRMloadmod`) and can then be run by a call to function `XPRMrunmod`. To use these functions, we need to include the header file `xprm_rt.h` at the beginning of our program.

```c
#include <stdio.h>
#include "xprm_rt.h"

int main()
{
    XPRMmodel mod;
    int result;

    if(XPRMinit())  /* Initialize Mosel */
        return 1;
    if((mod=XPRMloadmod("burglar2.bim", NULL))==NULL) /* Load a BIM file */
        return 2;
    if(XPRMrunmod(mod,&result,NULL)) /* Run the model */
        return 3;
    return 0;
}
```

The compile/load/run sequence may also be performed with a single function call to `XPRMexecmod` (in this case we need to include the header file `xprm_mc.h`):

```c
#include <stdio.h>
#include "xprm_mc.h"

int main()
{
    int result;

    if(XPRMinit())  /* Initialize Mosel */
        return 1;
    if(XPRMexecmod(NULL, "burglar2.mos", NULL, &result, NULL))
        return 2;
    return 0;
}
```

13.2 Parameters

In Part I the concept of parameters in Mosel has been introduced: when a Mosel model is executed from the command line, it is possible to pass new values for its parameters into the model. The same is possible with a model run in C. If, for instance, we want to run model ‘Prime’ from Section 8.2 to obtain all prime numbers up to 500 (instead of the default value 100 set for the parameter `LIMIT` in the model), we may start a program with the following lines:

```c
XPRMmodel mod;
int result;

if(XPRMinit())  /* Initialize Mosel */
    return 1;
if((mod=XPRMloadmod("prime.bim", NULL))==NULL) /* Load a BIM file */
    return 2;
if(XPRMrunmod(mod,&result,"LIMIT=500")) /* Run the model */
    return 3;
```
To use function `XPRMexecmod` instead of the compile/load/run sequence we have:

```c
int result;
if(XPRMinit())  /* Initialize Mosel */
    return 1;
/* Execute with new parameter settings */
if(XPRMexecmod(NULL,"prime.mos","LIMIT=500",&result,NULL))
    return 2;
```

13.3 Accessing modeling objects and solution values

Using the Mosel libraries, it is not only possible to compile and run models, but also to access information on the different modeling objects.

13.3.1 Accessing sets

A complete version of a program for running the model 'Prime' mentioned in the previous section may look as follows (we work with a model `prime2` that corresponds to the one printed in Section 8.2 but with all output printing removed because we are doing this in C):

```c
#include <stdio.h>
#include "xprm_mc.h"

int main()
{
    XPRMmodel mod;
    XPRMalltypes rvalue, setitem;
    XPRMset set;
    int result, type, i, size, first, last;
    if(XPRMinit())  /* Initialize Mosel */
        return 1;
    if(XPRMexecmod(NULL, "prime2.mos", "LIMIT=500", &result, &mod))
        return 2;  /* Execute the model */
    type=XPRMfindident(mod, "SPrime", &rvalue);  /* Get the object 'SPrime' */
    if((XPRM_TYP(type)!=XPRM_TYP_INT)|| / * Check the type: */
        (XPRM_STR(type)!=XPRM_STR_SET))  /* it must be a set of integers */
        return 3;
    set = rvalue.set;
    size = XPRMgetsetsize(set);  /* Get the size of the set */
    if(size>0)
        {
            first = XPRMgetfirstsetndx(set);  /* Get number of the first index */
            last = XPRMgetlastsetndx(set);  /* Get number of the last index */
            printf("Prime numbers from 2 to %d:\n", LIM);
            for(i=first;i<=last;i++)  /* Print all set elements */
                printf(" %d," , XPRMgetelsetval(set,i,&setitem)->integer);
            printf("\n");
        }
    return 0;
}
```

To print the contents of set `SPrime` that contains the desired result (prime numbers between 2 and 500), we first retrieve the Mosel reference to this object using function `XPRMfindident`. We are then able to enumerate the elements of the set (using functions `XPRMgetfirstsetndx` and `XPRMgetlastsetndx`) and obtain their respective values with `XPRMgetelsetval`.

C interface 79 Mosel User Guide
13.3.2 Retrieving solution values

The following program executes the model ‘Burglar3’ (the same as model ‘Burglar2’ from Chapter 2 but with all output printing removed) and prints out its solution.

```c
#include <stdio.h>
#include "xprm_rt.h"

int main()
{
  XPRMmodel mod;
  XPRMalltypes rvalue, itemname;
  XPRMarray varr, darr;
  XPRMmpvar x;
  XPRMset set;
  int indices[1], result, type;
  double val;

  if(XPRMinit())  /* Initialize Mosel */
    return 1;
  if((mod=XPRMloadmod("burglar3.bim", NULL))==NULL)  /* Load a BIM file */
    return 2;
  if(XPRMrunmod(mod, &result, NULL))  /* Run the model (includes optimization) */
    return 3;
  if((XPRMgetprobstat(mod)&XPRM_PBRES)!=XPRM_PBOPT)  /* Test whether a solution is found */
    return 4;
  printf("Objective value: %g
", XPRMgetobjval(mod));  /* Print the obj. function value */
  type=XPRMfindident(mod,"take",&rvalue);  /* Get the model object ‘take’ */
  if((XPRM_TYP(type)!=XPRM_TYP_MPVAR)||
     (XPRM_STR(type)!=XPRM_STR_ARR))  /* Check the type: it must be an ‘mpvar’ array */
    return 5;
  varr = rvalue.array;

  type=XPRMfindident(mod,"VALUE",&rvalue);  /* Get the model object ‘VALUE’ */
  if((XPRM_TYP(type)!=XPRM_TYP_REAL)||
     (XPRM_STR(type)!=XPRM_STR_ARR))  /* Check the type: it must be an array of reals */
    return 6;
  darr = rvalue.array;

  type=XPRMfindident(mod,"ITEMS",&rvalue);  /* Get the model object ‘ITEMS’ */
  if((XPRM_TYP(type)!=XPRM_TYP_STRING)||
     (XPRM_STR(type)!=XPRM_STR_SET))  /* Check the type: it must be a set of strings */
    return 7;
  set = rvalue.set;

  XPRMgetfirstarrentry(varr, indices);  /* Get the first entry of array varr (we know that the array is dense and has a single dimension) */
  do
  {
    XPRMgetarrval(varr, indices, &x);  /* Get a variable from varr */
    XPRMgetarrval(darr, indices, &val);  /* Get the corresponding value */
    printf("take(\%s): \%g\t (item value: \%g\n", XPRMgetelsetval(set, indices[0],
                           &itemname)->string, XPRMgetvsol(mod,x), val);
    /* Print the solution value */
  } while(!XPRMgetnextarrentry(varr, indices));  /* Get the next index tuple */
  return 0;
}
```

The array of variables varr is enumerated using the array functions XPRMgetfirstarrentry and XPRMgetnextarrentry. These functions may be applied to arrays of any type and dimension (for higher numbers of dimensions, merely the size of the array indices that is used to store the index-tuples has to be adapted). With these functions we run systematically through
all possible combinations of index tuples, hence the hint at dense arrays in the example. In the case of sparse arrays it is preferable to use different enumeration functions that only enumerate those entries that are defined (see next section).

13.3.3 Sparse arrays

In Chapter 3 the problem ‘Transport’ has been introduced. The objective of this problem is to calculate the flows \(\text{flow}_{pr} \) from a set of plants to a set of sales regions that satisfy all demand and supply constraints and minimize the total cost. Not all plants may deliver goods to all regions. The flow variables \(\text{flow}_{pr} \) are therefore defined as a sparse array. The following example prints out all existing entries of the array of variables.

```c
#include <stdio.h>
#include "xprm_rt.h"

int main()
{
    XPRMmodel mod;
    XPRMalltypes rvalue;
    XPRMarray varr;
    XPRMset *sets;
    int *indices, dim, result, type, i;

    if(XPRMinit()) /* Initialize Mosel */
        return 1;

    if((mod=XPRMloadmod("transport.bim", NULL))==NULL) /* Load a BIM file */
        return 2;

    if(XPRMrunmod(mod, &result, NULL)) /* Run the model */
        return 3;

    type=XPRMfindident(mod,"flow",&rvalue); /* Get the model object named 'flow' */
    if((XPRM_TYP(type)!=XPRM_TYP_MPVAR) ||
       (XPRM_STR(type)!=XPRM_STR_ARR)) /* it must be an array of unknowns */
        return 4;

    varr=rvalue.array;
    dim = XPRMgetarrdim(varr); /* Get the number of dimensions of the array */
    indices = (int *)malloc(dim*sizeof(int));
    sets = (XPRMset *)malloc(dim*sizeof(XPRMset));

    XPRMgetarrsets(varr,sets); /* Get the indexing sets */
    XPRMgetfirstarrtruentry(varr,indices); /* Get the first true index tuple */
    do
    {
        printf("\nflow(");
        for(i=0;i<dim-1;i++)
            printf("%s, ",XPRMgetelsetval(sets[i],indices[i],&rvalue)->string);
        printf("%s\), ",XPRMgetelsetval(sets[dim-1],indices[dim-1],&rvalue)->string);
    } while(!XPRMgetnextarrtruentry(varr,indices)); /* Get next true index tuple*/

    free(sets);
    free(indices);
    XPRMresetmod(mod);

    return 0;
}
```

In this example, we first get the number of indices (dimensions) of the array of variables \(\text{varr} \) (using function \(\text{XPRMgetarrdim()} \)). We use this information to allocate space for the arrays \(\text{sets} \) and \(\text{indices} \) that will be used to store the indexing sets and single index tuples for this array respectively. We then read the indexing sets of the array (function \(\text{XPRMgetarrsets()} \)) to be able to produce a nice printout.

The enumeration starts with the first defined index tuple, obtained with function \(\text{XPRMgetfirstarrtruentry()} \), and continues with a series of calls to \(\text{XPRMgetnextarrtruentry()} \) until
all defined entries have been enumerated.

13.3.4 Termination

At the end of the previous program example we have reset the model (using function XPRMresetmod), thus freeing some resources allocated to it, in particular deleting temporary files that may have been created during its execution.

All program examples in this manual only serve to execute Mosel models. The corresponding model and Mosel itself are terminated (unloaded from memory) with the end of the C program. However, for embedding the execution of a Mosel model into some larger application it may be desirable to free the space used by the model or the execution of Mosel before the end of the application program. To this aim Mosel provides the two functions XPRMunloadmod and XPRMfinish.

13.3.5 Problem solving in C with Xpress-Optimizer

In certain cases, for instance if the user wants to re-use parts of algorithms that he has written in C for the Xpress-Optimizer, it may be necessary to pass from a problem formulation with Mosel to solving the problem in C by direct calls to the Xpress-Optimizer. The following example shows how this may be done for the Burglar problem. We use a slightly modified version of the original Mosel model:

```mosel
model Burglar4
uses "mmxprs"

declarations
WTMAX=102 ! Maximum weight allowed
ITEMS="camera", "necklace", "vase", "picture", "tv", "video",
"chest", "brick") ! Index set for items
VALUE: array(ITEMS) of real ! Value of items
WEIGHT: array(ITEMS) of real ! Weight of items
take: array(ITEMS) of mpvar ! 1 if we take item i; 0 otherwise
end-declarations

! Item: ca ne va pi tv vi ch br
VALUE := [15, 100, 90, 60, 40, 15, 10, 1]
WEIGHT:= [ 2, 20, 20, 30, 40, 30, 60, 10]

! Objective: maximize total value
MaxVal:= sum(i in ITEMS) VALUE(i) * take(i)

! Weight restriction
sum(i in ITEMS) WEIGHT(i) * take(i) <= WTMAX

! All variables are 0/1
forall(i in ITEMS) take(i) is_binary

setparam("XPRS_LOADNAMES", true) ! Enable loading of object names
loadprob(MaxVal) ! Load problem into the optimizer

end-model
```

The procedure maximize to solve the problem has been replaced by loadprob. This procedure loads the problem into the optimizer without solving it. We also enable the loading of names from Mosel into the optimizer so that we may obtain an easily readable output.

The following C program reads in the Mosel model and solves the problem by direct calls to Xpress-Optimizer. To be able to address the problem loaded into the optimizer, we need to retrieve the optimizer problem pointer from Mosel. Since this information is a parameter (XPRS_PROBLEM) that is provided by module mmxprs, we first need to obtain the reference of this library (by using function XPRMfindld).
#include <stdio.h>
#include "xprm_rt.h"
#include "xprs.h"

int main()
{
 XPRMmodel mod;
 XPRMdsolib dso;
 XPRSprob prob;
 int result, ncol, len, i;
 double *sol, val;
 char *names;

 if(XPRMinit()) /* Initialize Mosel */
 return 1;

 if((mod=XPRMloadmod("burglar4.bim", NULL))==NULL) /* Load a BIM file */
 return 2;

 if(XPRMrunmod(mod, &result, NULL)) /* Run the model (no optimization) */
 return 3;

 /* Retrieve the pointer to the problem loaded in the Xpress-Optimizer */
 if((dso=XPRMfinddso("mmxprs"))==NULL)
 return 4;

 if(XPRMgetdsoparam(mod, dso, "XPRS_PROBLEM", &result, (XPRMalltypes *)&prob))
 return 5;

 if(XPRSmaxim(prob, "g")) /* Solve the problem */
 return 6;

 if(XPRSgetintattrib(prob, XPRS_MIPSTATUS, &result))
 return 7; /* Test whether a solution is found */

 if((result==4) || (result==6))
 {
 if(XPRSgetdblattrib(prob, XPRS_MIPOBJVAL, &val))
 return 8;
 printf("Objective value: %g\n", val); /* Print the objective function value */

 if(XPRSgetintattrib(prob, XPRS_COLS, &ncol))
 return 9;
 if((sol = (double *)malloc(ncol * sizeof(double)))==NULL)
 return 10;

 if(XPRSgetsol(prob, sol, NULL, NULL, NULL)) /* Get the primal solution values */
 return 11;
 if(XPRSgetintattrib(prob, XPRS_NAMELENGTH, &len))
 return 12; /* Get the maximum name length */

 if((names = (char *)malloc((len+1)*ncol*sizeof(char)))==NULL)
 return 13; /* Get the variable names */

 for(i=0; i<ncol; i++) /* Print out the solution */
 printf("%s: %g\n", names+(len+1)*i, sol[i]);
 free(names);
 free(sol);
 }

 return 0;
}

Since the Mosel language provides ample programming facilities, in most applications there will be no need to switch from the Mosel language to problem solving in C. If nevertheless this type of implementation is chosen, it should be noted that it is not possible to get back to Mosel, once the Xpress-Optimizer has been called directly from C: the solution information and any possible changes made to the problem directly in the optimizer are not communicated to Mosel.
Chapter 14
Other programming language interfaces

In this chapter we show how the examples from Sections 13.1 and 13.2 may be written with other programming languages, namely Java and Visual Basic.

14.1 Java

To use the Mosel Java classes the line `import com.dashoptimization.*;` must be added at the beginning of the program.

14.1.1 Compiling and executing a model in Java

With Java Mosel is initialized by creating a new instance of class XPRM. To execute a Mosel model in Java we call the three Mosel functions performing the standard compile/load/run sequence as shown in the following example.

```java
import com.dashoptimization.*;

public class ucomp
{
    public static void main(String[] args) throws Exception
    {
        XPRM mosel;
        XPRMModel mod;

        mosel = new XPRM(); // Initialize Mosel

        System.out.println("Compiling 'burglar2'");
        mosel.compile("burglar2.mos");

        System.out.println("Loading 'burglar2'");
        mod = mosel.loadModel("burglar2.bim");

        System.out.println("Executing 'burglar2'");
        mod.run();

        System.out.println("'burglar2' returned: " + mod.getResult());
    }
}
```

If the model execution is embedded in a larger application it may be useful to reset the model after its execution to free some resources allocated to it:

```java
mod.reset(); // Reset the model
```

This will release all intermediate objects created during the execution without deleting the model itself.
14.1.2 Parameters

When executing a Mosel model in Java, it is possible to pass new values for its parameters into the model. If, for instance, we want to run model ‘Prime’ from Section 8.2 to obtain all prime numbers up to 500 (instead of the default value 100 set for the parameter LIMIT in the model), we may write the following program:

```java
import com.dashoptimization.*;

public class ugparam
{
    public static void main(String[] args) throws Exception
    {
        XPRM mosel;
        XPRMModel mod;
        int LIM=500;

        mosel = new XPRM(); // Initialize Mosel
        System.out.println("Compiling 'prime'");
        mosel.compile("prime.mos");
        System.out.println("Loading 'prime'");
        mod = mosel.loadModel("prime.bim");
        System.out.println("Executing 'prime'");
        mod.execParams = "LIMIT=" + LIM;
        mod.run();
        System.out.println("'prime' returned: " + mod.getResult());
    }
}
```

Using the Mosel Java interface, it is not only possible to compile and run models, but also to access information on the different modeling objects as is shown in the following sections.

14.1.3 Accessing sets

A complete version of a program for running the model ‘Prime’ may look as follows (we work with a model prime2 that corresponds to the one printed in Section 8.2 but with all output printing removed because we are doing this in Java):

```java
import com.dashoptimization.*;

public class ugparam
{
    public static void main(String[] args) throws Exception
    {
        XPRM mosel;
        XPRMModel mod;
        XPRMSet set;
        int LIM=500, first, last;

        mosel = new XPRM(); // Initialize Mosel
        System.out.println("Compiling 'prime'");
        mosel.compile("prime.mos");
        System.out.println("Loading 'prime'");
        mod = mosel.loadModel("prime.bim");
        System.out.println("Executing 'prime'");
        mod.execParams = "LIMIT=" + LIM;
        mod.run();
        System.out.println("'prime' returned: " + mod.getResult());

        set=(XPRMSet)mod.findIdentifier("SPrime"); // Get the object 'SPrime'
        // it must be a set
```

if(!set.isEmpty())
{
 first = set.getFirstIndex(); // Get the number of the first index
 last = set.getLastIndex(); // Get the number of the last index
 System.out.println("Prime numbers from 2 to " + LIM);
 for(int i=first;i<=last;i++) // Print all set elements
 System.out.print(" " + set.getAsInteger(i) + ",");
 System.out.println();
}

To print the contents of set SPrime that contains the desired result (prime numbers between 2 and 500), we retrieve the Mosel object of this name using method findIdentifier. If this set is not empty, then we enumerate the elements of the set (using methods getFirstIndex and getLastIndex to obtain the index range).

14.1.4 Retrieving solution values

The following program executes the model ‘Burglar3’ (the same as model ‘Burglar2’ from Chapter 2 but with all output printing removed) and prints out its solution.

```java
import com.dashoptimization.*;

public class ugsol {
    public static void main(String[] args) throws Exception {
        XPRM mosel;
        XPRMModel mod;
        XPRMArray varr, darr;
        XPRMMPVar x;
        XPRMSet set;
        int[] indices;
        double val;

        mosel = new XPRM(); // Initialize Mosel
        mosel.compile("burglar3.mos"); // Compile, load & run the model
        mod = mosel.loadModel("burglar3.bim");
        mod.run();
        if(mod.getProblemStatus()!=mod.PB_OPTIMAL)
            System.exit(1); // Stop if no solution found
        System.out.println("Objective value: "+mod.getObjectiveValue());
        // Print the objective function value
        varr=(XPRMArray)mod.findIdentifier("take"); // Get model object ‘take’,
        // it must be an array
        darr=(XPRMArray)mod.findIdentifier("VALUE"); // Get model object ‘VALUE’,
        // it must be an array
        set=(XPRMSet)mod.findIdentifier("ITEMS"); // Get model object ‘ITEMS’,
        // it must be a set

        indices = varr.getFirstIndex(); // Get the first entry of array varr
        // (we know that the array is dense)
        do {
            x = varr.get(indices).asMPVar(); // Get a variable from varr
            val = darr.getAsReal(indices); // Get the corresponding value
            System.out.println("take(" + set.get(indices[0]) + "): " +
                x.getSolution() + ",t (item value: " + val + ")");
            // Print the solution value
            indices = varr.nextIndex(indices); // Get the next index
        } while(varr.nextIndex(indices)); // Reset the model
    }
}
```

Other programming language interfaces 86 Mosel User Guide
The array of variables \texttt{varr} is enumerated using the array functions \texttt{getFirstIndex} and \texttt{nextIndex}. These methods may be applied to arrays of any type and dimension. With these functions we run systematically through all possible combinations of index tuples, hence the hint at \textit{dense} arrays in the example. In the case of sparse arrays it is preferable to use different enumeration functions that only enumerate those entries that are defined (see next section).

14.1.5 Sparse arrays

We now again work with the problem ‘Transport’ that has been introduced in Chapter 3 the. The objective of this problem is to calculate the flows \(\text{flow}_{pr} \) from a set of plants to a set of sales regions that satisfy all demand and supply constraints and minimize the total cost. Not all plants may deliver goods to all regions. The flow variables \(\text{flow}_{pr} \) are therefore defined as a sparse array. The following example prints out all existing entries of the array of variables.

```java
import com.dashoptimization.*;

public class uarray
{
    public static void main(String[] args) throws Exception
    {
        XPRM mosel;  // Initialize Mosel
        XPRMModel mod;  // Compile, load & run the model
        XPRMArray varr;  // Get model object 'flow'
        XPRMSet[] sets;  // it must be an array
        int[] indices;  // Get the number of dimensions
        int dim;  // of the array

        mosel = new XPRM();
        mosel.compile("transport.mos");
        mod = mosel.loadModel("transport.bim");
        mod.run();

        varr=(XPRMArray)mod.findIdentifier("flow");
        dim = varr.getDimension();
        sets = varr.getIndexSets();

        indices = varr.getFirstTEIndex();  // Get the first true entry index
        do
        {
            System.out.print("flow(");
            for(int i=0;i<dim-1;i++)
                System.out.print(sets[i].get(indices[i]) + ",");
            System.out.print(sets[dim-1].get(indices[dim-1]) + ",") ;
            while(varr.nextTEIndex(indices));
            System.out.println();
        } while(varr.nextTEIndex(indices));

        mod.reset();  // Reset the model
    }
}
```

In this example, we first get the number of indices (dimensions) of the array of variables \texttt{varr} (using method \texttt{getDimension}). We use this information to enumerate the entries of every index tuple for generating a nicely formatted output. The array \texttt{sets} holds all the index sets of \texttt{varr} and the array \texttt{indices} corresponds to a single index tuple.

The enumeration starts with the first defined index tuple, obtained with method \texttt{getFirstTEIndex}, and continues with a series of calls to \texttt{next TEIndex} until all defined entries have been enumerated.

14.2 Visual Basic

In Visual Basic, a Mosel model needs to be embedded into a project. In this section we shall
only show the parts relevant to the Mosel functions, assuming that the execution of a model is	trigged by the action of clicking on some object.

14.2.1 Compiling and executing a model in Visual Basic

As with the other programming languages, to execute a Mosel model in Visual Basic we need to perform the standard compile/load/run sequence as shown in the following example. We use a slightly modified version burglar5.mos of the burglar problem where we have redirected the output printing to the file burglar_out.txt.

Private Sub burglar_Click()
 Dim model As Long
 Dim ret As Long
 Dim result As Long

 'Initialize Mosel
 ret = XPRMinit
 If ret <> 0 Then
 MsgBox "Initialization error (" & ret & ")"
 Exit Sub
 End If

 'Compile burglar5.mos
 ret = XPRMcompmod(vbNullString, "burglar5.mos", vbNullString, "Knapsack")
 If ret <> 0 Then
 MsgBox "Compile error (" & ret & ")"
 Exit Sub
 End If

 'Load burglar5.bim
 model = XPRMloadmod("burglar5.bim", vbNullString)
 If model = 0 Then
 MsgBox "Error loading model"
 Exit Sub
 End If

 'Run the model
 ret = XPRMrunmod(model, result, vbNullString)
 If ret <> 0 Then
 MsgBox "Execution error (" & ret & ")"
 Exit Sub
 End If
End Sub

14.2.2 Parameters

When executing a Mosel model in Visual Basic, it is possible to pass new values for its parameters into the model. The following program extract shows how we may run model ‘Prime’ from Section 8.2 to obtain all prime numbers up to 500 (instead of the default value 100 set for the parameter LIMIT in the model). We use a slightly modified version prime3.mos of the model where we have redirected the output printing to the file prime_out.txt.

Private Sub prime_Click()
 Dim model As Long
 Dim ret As Long
 Dim result As Long

 'Initialize Mosel
 ret = XPRMinit
 If ret <> 0 Then
 MsgBox "Initialization error (" & ret & ")"
 Exit Sub
 End If

 'Compile prime3.mos
 ret = XPRMcompmod(vbNullString, "prime3.mos", vbNullString, "Prime numbers")
 If ret <> 0 Then
 MsgBox "Compile error (" & ret & ")"
 End If
End Sub
Exit Sub
End If

'Load prime3.bim
model = XPRMloadmod("prime3.bim", vbNullString)
If model = 0 Then
 MsgBox "Error loading model"
 Exit Sub
End If

'Run model with new parameter settings
ret = XPRMrunmod(model, result, "LIMIT=500")
If ret <> 0 Then
 MsgBox "Execution error (" & ret & ")"
 Exit Sub
End If
End Sub

14.2.3 Redirecting the VB output

In the previous example we have hardcoded the redirection of the output directly in the model. With Mosel's VB interface the user may also redirect all output produced by Mosel to files, that is, redirect the output stream.

To redirect all output of a model to the file myout.txt surround the execution of the Mosel model by the following two function calls:

' Redirect all output to the file "myout.txt"
XPRMsetStream XPRMIO_OUT, "myout.txt"

' Close the output stream
XPRMclose XPRMIO_OUT

Similarly, any possible error messages produced by Mosel can be recovered by replacing in the two lines above XPRMIO_OUT by XPRMIO_ERR. This will redirect the error stream to the file myout.txt.
Appendix
Appendix A

Good modeling practice with Mosel

The following recommendations for writing Mosel models establish some guidelines as to how to write “good” models with Mosel. By “good” we mean re-usability, readability, and perhaps most importantly, efficiency: when observing these guidelines you can expect to obtain the best possible performance of Mosel for the compilation and execution of your models.

A.1 Using constants and parameters

Many mathematical models start with a set of definitions like the following:

```
NT:= 3
Months:= {'Jan', 'Feb', 'Mar'}
MAXP:= 8.4
Filename= "mydata.dat"
```

If these values do not change later in the model, they should be defined as constants, allowing Mosel to handle them more efficiently:

```
declarations
NT = 3
Months = {'Jan', 'Feb', 'Mar'}
MAXP = 8.4
Filename = "mydata.dat"
end-declarations
```

If such constants may change with the model instance that is solved, their definition should be moved into the parameters block (notice that this possibility only applies to simple types, excluding sets or arrays):

```
parameters
NT = 3
MAXP = 8.4
Filename = "mydata.dat"
end-parameters
```

Mosel interprets these parameters as constants, but their value may be changed at every execution of a model, e.g.

```
mosel -c "exec mymodel 'NT=5,MAXP=7.5,Filename=mynewdata.dat'"
```

A.2 Naming sets

It is customary in mathematical models to write index sets as 1,..,N or the like. Instead of translating this directly into Mosel code like the following:

```
```
declarations
x: array(1..N) of mpvar
end-declarations

sum(i in 1..N) x(i) >= 10

it is recommended to name index sets:

declarations
RI = 1..N
x: array(RI) of mpvar
end-declarations

sum(i in RI) x(i) >= 10

The same remark holds if several loops or operators use the same intermediate set(s). Instead of

forall(i in RI | isodd(i)) x(i) is_integer
forall(i in RI | isodd(i)) x(i) <= 5
sum(i in RI | isodd(i)) x(i) >= 10

which calculates the same intermediate set of odd numbers three times, it is more efficient to define this set explicitly and calculate it only once:

ODD:= union(i in RI | isodd(i)) {i}
forall(i in ODD) x(i) is_integer
forall(i in ODD) x(i) <= 5
sum(i in ODD) x(i) >= 10

Alternatively, loops of the same type and with the same index set(s) may be regrouped to reduce the number of times that the sets are calculated:

forall(i in RI | isodd(i)) do
 x(i) is_integer
 x(i) <= 5
end-do

A.3 Finalizing sets and dynamic arrays

In Mosel, an array is dynamic if it is indexed by a dynamic set. If an array is used to represent dense data, one should avoid defining it as a dynamic array as that uses more memory and is slower than the corresponding static array.

As an additional advantage, set finalization allows Mosel to check for ‘out of range’ errors that cannot be detected if the sets are dynamic.

So, code like the following example

declarations
S: set of string
A,B: array(S) of real
x: array(S) of mpvar
end-declarations

initializations from "mydata.dat"
A
end-initializations
forall(s in S) create(x(s))

where all arrays are declared as dynamic arrays (their size is not known at their declaration) but only A and I that are initialized using a data file really need to be dynamic, should preferably
be replaced by

```mosel
declarations
S: set of string
A: array(S) of real
end-declarations

initializations from "mydata.dat"
A
end-initializations

finalize(S)

declarations
B: array(S) of real
x: array(S) of mpvar
end-declarations
```

where B and x are created as static arrays, making the access to the array entries more efficient.

As a general rule, the following sequence of actions gives better results (in terms of memory consumption and efficiency):

1. Declare data arrays and sets that are to be initialized from external sources.
2. Perform initializations of data.
3. Finalize all related sets.
4. Declare any other arrays indexed by these sets (including decision variable arrays).

A.4 Ordering indices

Especially when working with sparse arrays, the sequence of their indices in loops should correspond as far as possible to the sequence given in their declaration. For example an array of variables declared by:

```mosel
declarations
A,B,C: range
x: array(A,B,C) of mpvar
end-initializations
```

that is mostly used in expressions like $\sum_{b \in B, c \in C, a \in A} x(a,b,c)$ should preferably be declared as

```mosel
declarations
A,B,C: range
x: array(B,C,A) of mpvar
end-declarations
```

or alternatively the indices of the loops adapted to the order of indices of the variables.

A.5 Use of exists

The Mosel compiler is able to identify sparse loops and optimizes them automatically, such as in the following example:

```mosel
declarations
I=1..1000
J=1..500
A:dynamic array(I,J) of real
x: array(I,J) of mpvar
```
end-declarations

initializations from "mydata.dat"
A
end-initializations

\[C := \sum_{i \in I, j \in J} \text{exists}(A(i,j)) \ A(i,j) \cdot x(i,j) = 0 \]

Notice that we obtain the same definition for the constraint \(C \) with the following variant of the code, but no loop optimization takes place:

\[C := \sum_{i \in I, j \in J} A(i,j) \cdot x(i,j) = 0 \]

Here all index tuples are enumerated and the corresponding entries of \(A \) are set to 0. Similarly, if not all entries of \(x \) are defined, the missing entries are interpreted as 0 by the sum operator (however, contrary to all other types, the entries of decision variable arrays are not created implicitly when they get addressed).

For efficient use of the function \text{exists}, the following rules have to be observed:

1. The arrays have to be indexed by named sets (here \(I \) and \(J \)):

 \(A: \text{dynamic array}(I,J) \) of real

 \(B: \text{dynamic array}(1..1000,1..500) \) of real

2. The same sets have to be used in the loops:

 \begin{align*}
 \forall (i \in I, j \in J \mid \text{exists}(A(i,j))) & \quad ! \text{ fast} \\
 K := I; \forall (i \in K, j \in 1..500 \mid \text{exists}(A(i,j))) & \quad ! \text{ slow}
 \end{align*}

3. The order of the sets has to be respected:

 \begin{align*}
 \forall (i \in I, j \in J \mid \text{exists}(A(i,j))) & \quad ! \text{ fast} \\
 \forall (j \in J, i \in I \mid \text{exists}(A(i,j))) & \quad ! \text{ slow}
 \end{align*}

4. The \text{exists} function calls have to be at the beginning of the condition:

 \begin{align*}
 \forall (i \in I, j \in I \mid \text{exists}(A(i,j)) \text{ and } i+j>10) & \quad ! \text{ fast} \\
 \forall (i \in J, j \in J \mid i+j>10 \text{ and } \text{exists}(A(i,j))) & \quad ! \text{ slow}
 \end{align*}

5. The optimization does not apply to \text{or} conditions:

 \begin{align*}
 \forall (i \in I, j \in J \mid \text{exists}(A(i,j)) \text{ and } i+j<10) & \quad ! \text{ fast} \\
 \forall (i \in I, j \in J \mid \text{exists}(A(i,j)) \text{ or } i+j<10) & \quad ! \text{ slow}
 \end{align*}

A.6 Structuring a model

Procedures and functions may be introduced to structure a model. For easy readability, the length of a subroutine should not exceed the length of one page (screen).

Large model files could even be split into several files (and combined using the \text{include} statement).

A.7 Transforming subroutines into user modules

The definition of subroutines that are expensive in terms of execution time and are called very often (e.g. at every node of the Branch-and-Bound search) may be moved to a user module. Via the Mosel Native Interface it is possible to access and change all information in a Mosel model during its execution. See the Mosel Native Interface User Guide for a detailed description of how to define user modules.
A.8 Debugging options, IVE

Models compiled in the graphical development environment IVE have by default the debugging option (-g) enabled. Once the model development is terminated, remember to recompile without this option to generate a production version of your model.

Notice further that since IVE intercepts information from Xpress-Optimizer and produces graphical output, models always execute faster when Mosel is used in stand-alone mode or when they are run through the Mosel libraries.

A.9 Algorithm choice and parameter settings

The performance of the underlying solution algorithm has strictly speaking nothing to do with the efficiency of Mosel. But for completeness’ sake the reader may be reminded that the subroutines getparam and setparam can be used to access and modify the current settings of parameters of Mosel and also those provided by modules, such as solvers.

The list of parameters defined by a module can be obtained with the Mosel command

```
exam -p module_name
```

With Xpress-Optimizer (module mmxprs) you may try re-setting the following control parameters for the algorithm choice:

- **LP**: XPRS_PRESOLVE
- **MIP**: XPRS_MIPRESOLVE, XPRS_CUTSTRATEGY, XPRS_NODESELECTION, XPRS_BACKTRACK
- **Other useful parameters** are the criteria for stopping the MIP search: XPRS_MAXNODE, XPRS_MAXMIPSOL, XPRS_MAXTIME, the cutoff value (XPRS_MIPADDCUTOFF, XPRS_MIPABSCUTOFF), and **various tolerance settings** (e.g. XPRS_MIPTOL).

Refer to the Optimizer Reference Manual for more detail.

You may also add priorities or preferred branching directions with the procedure setmipdir (documented in the chapter on mmxprs in the Mosel Reference Manual).
Index

Symbols
*, 7, 45
+, 14, 45
+=, 46
-, 14
-=, 14, 45
<=, 7
>=, 7

A
abs, 51
addcuts, 62
and, 32
array, 11
 declaration, 11
dense, 81, 87, 92
dynamic, 21, 22, 59, 66
finalize, 92
initialization, 12, 16
input data format, 21
multi-dimensional, 11, 12, 21
sparse, 81, 87
static, 23, 92
array, 32
as, 32

B
BIM file, 77
binary variable, 26
blending constraint, 14
boolean, 32, 43
bounded variable, 15
break, 32, 42

C
C interface, 77
callback, 63
case, 32
ceil, 64
column, see variable
column generation, 64
comment, 7
 multiple lines, 7
comparison
 set, 46
comparison tolerance, 62
compile, 8, 77
condition, 21, 38, 94
conditional generation, 21
conditional loop, 41
constant, 11
constant set, 43

constraint
 hide, 73
 MVLB, 60
 named, 12
 non-negativity, 6, 7
type, 73
continuation line, 14
create, 22
cross-recursion, 49
cut generation, 58
cut manager, 62
cut manager entry callback, 63
cut pool, 62
cutting plane method, 58
cutting stock problem, 64

D
data
 input from database, 17
 input from file, 16, 21, 23
 multi-dimensional array, 21, 23
 output, 55
 sparse format, 23
data file
 format, 16, 21
database, 17
debugging, 34
decision variable, see variable, 5
 array, 12
declaration
 array, 11
 subroutine, 50
declarations, 7, 32, 48
dense, 81, 87
deprivation variable, 73
difference, 45, 46
diskdata, 24, 25, 56
div, 32
do, 32
dynamic, 32
dynamic array, 21, 22, 59
dynamic set, 43

e
eif, 32
else, 32
end, 32
end-declarations, 7
do, 40
end-function, 47
end-initializations, 16
end-model, 7
end-procedure, 47
enumeration
mmSystem, 32
mmxprs, 8, 31, 35, 82
mod, 32
model, 6
 compile, 77
 execute, 8
 reset, 82, 84
 run, 8
 unload, 82
model, 7, 32
model file, 77
model structure, 94
module, 31
MP, see Mathematical Programming
mpvar, 7, 12, 21, 32, 43
multiple indices, 40
multiple problems, 67
MVLB constraint, 60

N
name
 constraint, 12
nbread, 24
negation, 46
nested loops, 42
next, 32
nextTEIndex, 87
nextIndex, 87
non-negative variable, 6, 7
non-negativity constraint, 6, 7
not, 32, 46
number output format, 56

O
objective function, 6, 7
ODBC, 17
of, 33
operator
 set, 46
optimization, 8
options, 33
or, 33, 94
output, 8
 file, 55
 formatted, 72
 formatting, 53
 redirection, 89
output file, 89
overloading, 51

P
parameter, 16
 comparison tolerance, 62
 global, 48
 local, 48
 number output format, 56
 subroutine, 48
parameters, 17, 33, 91
partial integer variable, 26
perfect number, 40
prime number, 45, 79, 85
problem
 multiple, 67
 solving, 8
procedure, 47, 94
procedure, 33, 47
prod, 33
project planning problem, 28
public, 33, 64

Q
Quadratic Programming, 4
quick sort, 50

R
range, 33, 40
range set, 11
read, 24
readin, 24
real
 output format, 56
real, 33, 43
REALFMT, 56
recursion, 49, 69
reference row entries, 27
repeat, 33
repeat-until, 40, 42
reset
 model, 82, 84
returned, 47
row, see constraint
run, 8, 77

S
selection statements, 38
semi-continuous integer variable, 27
semi-continuous variable, 27
set, 43, 79, 85
 comparison, 46
 constant, 23, 43
 dynamic, 43
 finalize, 92
 finalized, 23
 fixed, 43, 44
 initialization, 43
 maximum, 39
 minimum, 39
 string indices, 13
 type, 43
set, 33
set of strings, 13
set operation, 45
set operator, 46
sethidden, 67, 73
shell sort, 42
silent option, 9
solution value, 80, 86
solving, 8
sorting algorithm, 42, 50
sparse, 21, 23, 56, 81, 87
 loop, 93
sparsity, 19
Special Ordered Set of type one, 27, 30
Special Ordered Set of type two, 27
spreadsheet, 17
strfmt, 53
string, 33, 43
subproblem, 73
Index

subroutine, 47, 94
declaration, 50
definition, 50
overloading, 51
parameter, 48
subscript, 11
subset, 46
Successive Linear Programming, 69
sum, 33
summation, 12
superset, 46
syntax error, 34
T
table, see array
tape
set, 43
termination, 82
then, 33
to, 33
tolerance
comparison, 62
feasibility, 62
real number output, 56
transport problem, 19, 81, 87
true, 33
type
constant, 11
constraint, 73
U
unbounded variable, 70
union, 45
union, 33
unload
model, 82
until, 33
uses, 17, 33
V
variable, 5
binary, 13, 26
bounds, 15
conditional creation, 22
free, 70
integer, 13, 26
lower bound, 7
non-negative, 6, 7
partial integer, 26
semi-continuous, 27
semi-continuous integer, 27
unbounded, 70
W
warning, 35
while, 33, 40–42, 46
while-do, 40, 41
write, 8, 53, 55
writeln, 8, 23, 53, 55
X
XPRM, 84
XPRMexecmod, 78
XPRMexecmod, 79
XPRMfinddso, 82
XPRMfindident, 79
XPRMfinish, 82
XPRMgetfirstarrtruenentry, 81
XPRMgetnextarrtruenentry, 81
XPRMgetarrdim, 81
XPRMgetarrset, 81
XPRMgetelsetval, 79
XPRMgetfirstarrentry, 80
XPRMgetfirstsetndx, 79
XPRMgetlastsetndx, 79
XPRMgetnextarrentry, 80
XPRMIO_ERR, 89
XPRMIO_OUT, 89
XPRMloadmod, 78
XPRMresetmod, 82
XPRMrunmod, 78
XPRMunloadmod, 82
XPRS_PROBLEM, 82
XPRS_SOLUTIONFILE, 64
XPRS_LOADNAMES, 35
XPRS_VERBOSE, 35
Z
ZERO_TOL, 62