
Windows operating system implements functions of the

application programming interface (API) and makes them

available to application programs. The same functions are

generally supported on 32-bit and 64-bit Windows. The

functions are in the dynamic link libraries (dll files).

Win32 is the 32-bit application programming interface.

Developer support is available in the form of the Windows

Software Development Kit (SDK):

• contains libraries to interface to a particular programming

language, sample code, documentation

• freely available on the page

http://msdn.microsoft.com/en-US/

Windows services

The returned value is in the EAX register.

The NULL value that some parameters of the functions may

take is implemented as a 32-bit constant 0.

The TRUE value is implemented as 1, FALSE as 0.

The constants are defined in the SmallWin.inc file.

Win32 API functions do not preserve EAX, EBX, ECX, and EDX!

Functions with a string parameter have two versions

depending on the string encoding:

• ANSI => the name of a function is terminated by letter A

• Unicode => the name of a function is terminated by letter W

ASCII – 7-bit code

ANSI – 8-bit Microsoft-specific encoding, codes 128-255 are for

special characters.

Unicode - a computing industry standard for the encoding of

text expressed in most of the world's writing systems. Unicode

can be implemented by different character encodings. The

most commonly used encodings are UTF-8 and UTF-16.

UTF-8 uses 1 to 4 bytes encoding; the first 128 code points are

the ASCII characters.

In UTF-16 the code unit is a 16-bit word, a character is

encoded in one or two code units.

Example:

function MessageBox – displays a dialog box that contains a

short message about the program status or error information,

and a set of buttons

int MessageBoxA(

 HWND hwnd,

 LPCTSTR lpText,

 LPCTSTR lpCaption,

 UINT uType

);

Parameters

hWnd – a handle to the owner window of the message box.

If this parameter is NULL, the message box has no owner

window and the message box will be displayed in the

middle of the screen.

lpText – a pointer to the null terminated string – the

message to be displayed.

lpCaption – a pointer to the null terminated string – the

dialog box title that is displayed in the box upper bar.

uType – a constant that specifies the contents and behavior

of the dialog box

Return value

If the function fails, the return value is zero. Otherwise,

the message box returns an integer value that indicates

which button the user clicked (IDYES, IDNO, IDOK, ...).

.data
DialogBoxCaption DB 'Warning',0
DialogBoxText DB 'This program is too slow!',0
.code
; create message box
INVOKE MessageBoxA, NULL, offset DialogBoxText,
offset DialogBoxCaption, MB_OK or MB_ICONWARNING

int MessageBoxA(

 HWND hwnd,

 LPCTSTR lpText,

 LPCTSTR lpCaption,

 UINT uType);

The first operation with the file (e.g. create a new file, open

an existing file) identifies the file by its name.

The file name is a null terminated string. It can contain the

device and path specification, e.g.:

File1 DB 'MyFile.asm',0
File2 DB 'c:\Users\Teacher\Test.txt',0

Windows file services

The function assigns a 32-bit identification number (file

handle) to the file. We have to store it because the following

operations with the file (read, write, close) identify the file

by this number instead of its name.

CreateFile

– creates a file and opens it for the desired type of access

(read and/or write) or opens an existing file.

– returns the file handle in the EAX register. If the function

fails, the return value is INVALID_HANDLE_VALUE (-1).

HANDLE CreateFile(

 LPCTSTR lpFileName, // address (32-bit offset) of the name

of the file

DWORD dwDesiredAccess,

DWORD dwShareMode,

LPSECURITY_ATTRIBUTES lpSecurityAttributes,

DWORD dwCreationDisposition,

DWORD dwFlagsAndAttributes,

HANDLE hTemplateFile

);

Value Meaning

0

The application wants to query file attributes (e.g.

the time of the last change) without actually

accessing the file.

GENERIC_READ

(80000000h)

Specifies read access to the file.

GENERIC_WRITE

(40000000h)

Specifies write access to the file.

GENERIC_READ or

GENERIC_WRITE

Read and write.

Parameter dwDesiredAccess - the requested access to the

file (read, write, both, or none)

Value Meaning

0
Prevents other processes from opening the file.

FILE_SHARE_READ (1)
Other processes can open the file for read

access.

FILE_SHARE _WRITE (2)
Other processes can open the file for write

access.

FILE_SHARE_READ or

FILE_SHARE_WRITE

Other processes can open the file for read or

write access.

Parameter dwShareMode – sharing mode:

Parameter lpSecurityAttributes – a pointer to a

SECURITY_ATTRIBUTES structure that specifies the access

rights for the file and determines whether the returned file

handle can be inherited by child processes.

If this parameter is NULL, the file handle returned by

CreateFile cannot be inherited and the file gets a default

security descriptor (only the owner and the administrator can

access to the file).

Value Meaning

CREATE_NEW (1)

Creates a new file, only if it does not already

exist. If the specified file exists, the function

fails.

CREATE_ALWAYS (2)
Creates a new file. If the specified file exists,

the function overwrites it.

OPEN_EXISTING (3)
Opens an existing file. If the specified file does

not exist, the function fails.

OPEN_ALWAYS (4)
Opens a file. If the specified file does not exist,

the function creates it.

TRUNCATE_EXISTING (5)

Opens an existing file and truncates it so that

its size is zero bytes. If the specified file does

not exist, the function fails. The file must be

opened with the GENERIC_WRITE bit set in the

dwDesiredAccess parameter.

Parameter dwCreationDisposition – an action to take on a file

that exists or does not exist

Parameter dwFlagsAndAttributes

Selected attributes:

Value Meaning

FILE_ATTRIBUTE_READONLY (1)
Applications can read the file, but cannot

write to or delete it.

FILE_ATTRIBUTE_HIDDEN (2)
The file is hidden. Do not include it in an

ordinary directory listing.

FILE_ATTRIBUTE_ARCHIVE (20h)
The file should be archived. Applications

use this attribute to mark files for backup.

FILE_ATTRIBUTE_NORMAL (80h)
The most common value. It cannot be

combined with other attributes.

FILE_ATTRIBUTE_TEMPORARY

(100h)

Temporary file. The operating system tries

to keep the data in memory and avoid

writing the data to a hard disk (due to a

faster access), because an application

deletes a temporary file after a handle is

closed.

Parameter hTemplateFile – a handle to a template file. The

template file supplies file attributes.

When creating a new file, CreateFile ignores attributes

specified in the dwFlagsAndAttributes parameter and copies

the attributes of the template file.

When opening an existing file, CreateFile ignores this

parameter.

This parameter can be NULL.

ReadFile

Reads data from the specified file from the position specified

by the file pointer. If the function succeeds, the return value

is true, otherwise false.

BOOL ReadFile(

HANDLE hFile, // file handle

LPVOID lpBuffer, // a pointer to the buffer that receives the

data read from the file

DWORD nNumberOfBytesToRead, // the number of bytes to be

read

LPDWORD lpNumberOfBytesRead, // a pointer to the variable

that receives the number of bytes read

LPOVERLAPPED lpOverlapped // a pointer to an OVELAPPED

structure that is used at the asynchronous access; at the

synchronous access this parameter is NULL

);

WriteFile

Writes data to the specified file from the position specified

by the file pointer.

If the function succeeds, the return value is true, otherwise

false.

The parameters are the same as with the ReadFile function.

CloseHandle

Closes the file.

BOOL CloseHandle(

 HANDLE hObject // file handle

);

.data
FileName DB 'String.txt',0
Text DB 'Hello!'‚0Dh,0Ah
NumberOfChar EQU sizeof Text
FileHandle DD ?
NumberOfBytes DD ?

.code
main PROC

 Write the contents of the string variable Text to a file.

HANDLE CreateFile(

 LPCTSTR lpFileName,

 DWORD dwDesiredAccess,

 DWORD dwShareMode,

 LPSECURITY_ATTRIBUTES lpSecurityAttributes,

 DWORD dwCreationDisposition,

 DWORD dwFlagsAndAttributes,

 HANDLE hTemplateFile);

; crate file FileName
 INVOKE CreateFileA, offset FileName,
 GENERIC_WRITE, 0, NULL, CREATE_ALWAYS,
 FILE_ATTRIBUTE_NORMAL, NULL
 mov FileHandle,eax; store file handle

 ; write the variable Text to the file
 INVOKE WriteFile, FileHandle, offset Text,
 NumberOfChar, offset NumberOfBytes, NULL

 ; close the file
 INVOKE CloseHandle, FileHandle

 exit
main ENDP

BOOL WriteFile(

 HANDLE hFile,

 LPVOID lpBuffer,

 DWORD nNumberOfBytesToWrite,

 LPDWORD lpNumberOfBytesWritten,

 LPOVERLAPPED lpOverlapped);

 34 30 39 36 0D 0A

 Read an unsigned integer as a string from the text file

Number.txt. Calculate its value and store it to the AX

register.

File Number.txt contains:

4096

.data
FileName DB 'Number.txt',0
Char DB ?
NumberOfChar EQU 1
FileHandle DD ?
NumberOfBytes DD ?
Ten DW 10

.code
main PROC

; open the file for read access
 INVOKE CreateFileA, offset FileName,
 GENERIC_READ, 0, NULL, OPEN_EXISTING,
 FILE_ATTRIBUTE_NORMAL, NULL
 mov FileHandle,eax; store file handle

HANDLE CreateFile(

 LPCTSTR lpFileName,

 DWORD dwDesiredAccess,

 DWORD dwShareMode,

 LPSECURITY_ATTRIBUTES lpSecurityAttributes,

 DWORD dwCreationDisposition,

 DWORD dwFlagsAndAttributes,

 HANDLE hTemplateFile);

 xor eax,eax
; read by one digit and convert to a value
Read:
 push eax ; save temporary result
 INVOKE ReadFile, FileHandle, offset Char,
 NumberOfChar, offset NumberOfBytes, NULL
 pop eax ; restore temporary result

BOOL ReadFile(

HANDLE hFile,

LPVOID lpBuffer,

DWORD nNumberOfBytesToRead,

LPDWORD lpNumberOfBytesRead,

LPOVERLAPPED lpOverlapped);

 cmp Char,0Dh; Enter?
 je Finish
 mul Ten; ax = ax*10
 movzx cx,Char
 sub cl,'0'
 add ax,cx
 jmp Read

Finish:
 ; close the file
 INVOKE CloseHandle, FileHandle
 exit
main ENDP

 Write the signed integer in the AX register to the text file

Number.txt.

.data
FileName DB 'Number.txt',0
String DB 5 dup(?)
Minus DB '-'
NumberOfChar EQU 1
FileHandle DD ?
NumberOfBytes DD ?
Ten DW 10
.code
main PROC

; open the file for write access
 INVOKE CreateFileA, offset FileName,
 GENERIC_WRITE, 0, NULL, CREATE_ALWAYS,
 FILE_ATTRIBUTE_NORMAL, NULL
 mov FileHandle,eax; store file handle

HANDLE CreateFile(

 LPCTSTR lpFileName,

 DWORD dwDesiredAccess,

 DWORD dwShareMode,

 LPSECURITY_ATTRIBUTES lpSecurityAttributes,

 DWORD dwCreationDisposition,

 DWORD dwFlagsAndAttributes,

 HANDLE hTemplateFile);

 mov ax,-1234
 mov edi,0
 cmp ax,0
 jge Convert
; write "-" to the file and negate ax
 push eax
 INVOKE WriteFile, FileHandle, offset Minus,
NumberOfChar, offset NumberOfBytes, NULL
 pop eax
 neg ax

BOOL WriteFile(

HANDLE hFile,

LPVOID lpBuffer,

DWORD nNumberOfBytesToWrite,

LPDWORD lpNumberOfBytesWritten,

LPOVERLAPPED lpOverlapped);

; convert the number in ax to a string
Convert:
 mov dx,0
 div Ten
 add dl,'0'
 mov String[edi],dl; store the remainder (one digit)
 inc edi
 cmp ax,0; stop division?
 jne Convert

; write String to the file in the reverse order
Write:
 dec edi
 mov ebx,offset String
 add ebx,edi; ebx points to the current digit
 INVOKE WriteFile, FileHandle, ebx,
NumberOfChar, offset NumberOfBytes, NULL
 cmp edi,0
 jne Write

; close the file
 INVOKE CloseHandle, FileHandle
 exit
main ENDP

When a Windows application starts, it creates either a

console window or a graphical window.

Create the console window in the Visual Studio:

Project – Properties – Configuration Properties – Linker –

System

 SubSystem: Console (/SUBSYSTEM: CONSOLE)

MS-Windows programming

- by calling Windows API functions.

Windows function WriteConsole writes a character string

beginning at the current cursor location.

Procedure WriteString from Irvine32 library is actually a

wrapper around a more detailed call to the Win32

WriteConsole function.

Output to the console window

Windows-based applications are event-driven. They do not

make explicit function calls to obtain input. Instead, they

wait for the system to pass input to them.

Input devices: keyboard, mouse.

Moving the mouse, click, pressing a key are input events.

Windows sends messages about the input events to the

application program.

Input in Windows

Retrieves a message from

the queue and copies it to a

structure of type MSG.

Sends a message to the

window specified in the MSG

structure by calling its

window procedure.

Application Windows

Initialize the application,

displays its main window.

 GetMessage()

 TranslateMessage()

 DispatchMessage()

 Repeat until the

 WM_QUIT message

 comes.

Close the application.

message loop Translates the virtual-key

message into a character

message and places it back into

the application message queue.

function WinMain()

Message

typedef struct tagMSG {

 HWND hwnd; // handle to the window that is to receive

the message

 UINT message; // message identifier

 WPARAM wParam; // additional information about the

message

 LPARAM lParam; // additional information

 DWORD time; // the time at which the message was

posted

 POINT pt; // the cursor position, in screen coordinates,

when the message was posted

} MSG;

Application

case statement for

processing messages

DefWindowProc()

Each application’s window has a window procedure. A window

procedure is a function that receives and processes all messages

sent to the window. The system sends a message to a window

procedure by passing the message data as arguments to the

procedure.

WindowProc in the case statement checks the message identifier

uMsg and performs an appropriate action; while processing the

message, uses information specified by the wParam and lParam

parameters.

function WindowProc()

LRESULT WindowProc(

 HWND hwnd, // handle to the window

 UINT uMsg, // message identifier

 WPARAM wParam, // additional info

 LPARAM lParam

);

If the window procedure ignores a message, it must send the

message back to the system for default processing by calling the

DefWindowProc function.

A console formats each input event (such as a single

keystroke, a movement of the mouse, or a mouse-button

click) as an input record that it places in the console's input

buffer.

Applications can access a console's input buffer indirectly by

using the high-level console I/O functions, or directly by using

the low-level functions. The high-level input functions filter

and process the data in the input buffer, returning only a

stream of input characters.

Windows function ReadConsole reads keyboard input from a

console's input buffer and returns the characters read.

Procedure ReadString from Irvine32 library wrapes the Win32

ReadConsole function.

Console input

