
Floating point arithmetic

Operations on floating point numbers are performed in the

Floating Point Unit (FPU).

The FPU supports seven different data types:

• floating point numbers represented in:

• single precision (32 bits)

• double precision (64 bits)

• extended precision (80 bits) – internal format

• integers of type word, dword and qword

• packed BCD integers

internal

format

A real number in the form 1.23 e 1 is defined by two

numbers:
mantissa exponent

Floating point numbers

Value of a number is: mantissa  base raised to the power

of exponent (1.23  101 = 12.3)

Numbers are stored in a limited number of bits. As a

consequence:

1. the range of numbers (determined by the exponent) is

limited

2. the precision (given by the mantissa) is limited, i.e. the

number of values between two consecutive numbers is

limited

=> computation with real numbers approximates real

arithmetic

Assume the format:

m.mmee

Example 1: 1.23e1 + 4.56e0 = 1.23e1 + 0.456e1 = ?

a) 1.68e1 ... if two decimal places of the mantissa are used

during the computation

b) 1.69e1 ... if three decimal places of the mantissa are used

during the computation and the result is rounded

You get a more accurate result if you perform

computation with numbers that have similar

exponents.

Example 2: Add 1.00e0 ten times to the number 1.23e3.

Solution A:

1. step: 1.23e3 + 0.001e3 = 1.23e3

2. step: 1.23e3 + 0.001e3 = 1.23e3

...

Result: 1.23e3

Solution B:

1. step: 10 * 1.00e0 = 1.00e1

2. step: 1.23e3 + 0.01e3 = 1.24e3 ... correct result

The final result depends on the order in which partial

operations are performed.

Multiplication and division increase the error.

Example 3: Multiply the result of the Example 2 by 2.

Solution A: 2  1.23e3 = 2.46e3

Solution B: 2  1.24e3 = 2.48e3 ... correct result

Multiply and divide first, then add and subtract.

x * (y + z)  x * y + x * z

Comparison of real numbers in a computer program

A computer evaluates the relation x = y as true, only if all

bits of the numbers x and y are identical.

Tip: Choose a tolerance with which you consider two

numbers equivalent.

x = y  if abs(x-y) <= tolerance then ...

x > y  if x-y > tolerance then ...

x < y  if x-y < -tolerance then ...

IEEE single precision format

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

mantissa

exponent

sign: + ... 0, - ... 1

The mantissa of a normal number is 1.m22m21...m0

m22, m21, ..., m0 are significant digits

The leading 1 can be implied rather than explicitly present

in the memory encoding.

The exponent value used in the arithmetic may be in the

range -126; 127. In the encoding it is shifted by a bias so

that the exponent could be an 8-bit unsigned integer  1;

254 (bias 127 is added to the original exponent value).

Exponents of 0 a 255 are reserved for special numbers, e.g.:

Zero: exponent: 0, mantissa: 0, sign: 0 or 1

+infinity: exponent: 255, mantissa: 0, sign: 0

Example: What is the single precision format of 0.3?

(0.3)10 = (?)2

0.3 * 2

0.6 * 2

1.2  0.2 * 2

0.4 * 2

0.8 * 2

1.6  0.6 * 2

1.2  0.2 * 2

0.4 * 2

0.8 * 2

1.6 ...
Result: 0.010011001100110011001100110...

In the normalized form, after rounding:

mantissa: 1.001100110011001100110102

exponent: -2

Biased exponent: -2+127=125

(125)10 = (?)2

Exponent encoding: 01111101

Mantissa: 1. 00110011001100110011010

Single precision encoding of 0.3:

0 01111101 00110011001100110011010

DD 0.3 ; 9A 99 99 3E

FPU data registers

• 8 80-bit data registers R0 to R7

• contain instruction operands

• organized as a stack

• instructions refer to them as st(0) to st(7), the

index is relative to the top of the stack
79 0

R0

R1

R2

R3

R4 st(0)

R5 st(1)

R6 st(2)

R7 st(3)

Top of the

stack

names of the

registers in

instructions

 FPU status register

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

C3 C2 C1 C0

FPU busy invalid

operation

denormal number

zero divide

stack fault (C1 = 1 ... overflow,

C1 = 0 ... underflow)

precision (e.g. 1/3)

numeric underflow

numeric overflow

Interrupt Request – is set to 1 if any

exception 0 to 5 occurs and is not masked

stack pointer (the

number of the data

register that is on the

top of the stack)

condition codes (C0, C2

and C3 are set by

comparison of two FPU

numbers)

exception flags - are set

whenever the FPU

detects an exception

 FPU control register

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

provide rounding control:

00 (default) – round to nearest

01 – round down (toward -)

10 – round up (toward +)

11 – truncate (toward 0)

specify the precision during computation:

00 – 23 bits, 10 – 52 bits, 11 (default setting) – 63 bits

exception masks: mask = 0 => when the corresponding

condition occurs, then the FPU generates an interrupt

mask = 1 (default setting) => FPU indicates the

corresponding exception in the status register but it does

not initiate the interrupt

Method 1.0111 -1.0111

round to nearest 1.100 -1.100

round down (toward -) 1.011 -1.100

round up (toward +) 1.100 -1.011

truncate (toward 0) 1.011 -1.011

Example: Round to 3 decimal places

FPU instruction set

fld real32 / real64 / real80 / st(i)

fild int16 / int32 / int64

fbld BCD

Data movement instructions

• load the operand onto the floating point stack - copy the

operand to st(0)

• automatically convert the operand to an 80 bit extended

precision format (internal FPU format)

• operand: a variable or an st(i) register

load

integer load

BCD load

fst real32 / real64 / st(i)

fist int16 / int32

• copy the value on the top of the floating point stack to

another FPU register or a variable

• automatically convert the operand to the desired format

store

integer store

fstp real32 / real64 / real80 / st(i)

fistp int16 / int32 / int64

fbstp BCD

• copy the value on the top of the floating point stack to

another FPU register or a variable and pop the value off the

stack (i is index before pop)

• automatically convert the operand to the desired format

store and pop

integer store and pop

BCD store and pop

fxch st(i)

• exchanges the contents of the st(0) and st(i) registers

• fxch without an operand exchanges the contents of the

st(0) and st(1) registers

exchange registers

fadd real32 / real64

fiadd int16 / int32

Arithmetic instructions

• add the operand to st(0)

fadd st(0), st(i)

fadd st(i), st(0)

• add the operands and store the result into the left

operand

faddp st(i), st(0)

• st(i) = st(i) + st(0) and pops st(0) off the stack

fadd and faddp without operands do the same as

faddp st(1),st(0)

st(0) 244.66

FPU stack after fadd:

st(0) 10.1

st(1) 234.56

FPU stack:

FPU stack after fadd st(1),st(0):

st(0) 10.1

st(1) 244.66

Subtraction: fsub

Multiplication: fmul

Division: fdiv

Reverse subtraction: fsubr (swaps the operands)

fsub; st(1) = st(1) – st(0) and pop st(0)

fsubr; st(1) = st(0) – st(1) and pop st(0)

Reverse division: fdivr (swaps the dividend and divisor)

Instruction Operation with st(0)

fchs st(0) = - st(0)

fsqrt

fabs st(0) = |st(0)|

fsin st(0) = sin(st(0))

fcos st(0) = cos(st(0))

st(0)st(0) 

fcom real32 / real64 / st(i)

ficom int16 / int32

Comparison instructions

• compare the operand with st(0) and set condition bits C0,

C2 and C3 in the status register.

compare

integer compare

fcom and fcomp without an operand have the implicit

operand st(1)

fcomp real32 / real64 / st(i)

ficomp int16 / int32

• compare the operand with st(0), set condition bits C0, C2

and C3 in the status register and pop st(0) off the stack.

compare and pop

integer compare and pop

fcompp

• compares st(1) with st(0), sets condition bits C0, C2 and C3

in the status register and pops st(0) and st(1) off the stack.

C3 C2 C0 Condition

0 0 0 st(0) > operand

0 0 1 st(0) < operand

1 0 0 st(0) = operand

1 1 1 st(0) or source undefined

Condition code bits C3, C2 and C0 after comparison :

compare and pop twice

ftst

• compares st(0) to 0.

test stack top

finit

Control instructions

• initializes the FPU – the status register is set to 0,

the control register is set as follows:

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 0 0 0 0 0 1 1 0 1 1 1 1 1 1 1

fldcw memory

• loads the control register from a 16-bit memory location.

fstcw memory

• stores the control register to a 16-bit memory location.

fstsw memory/AX

• stores the status register to a 16-bit memory location or to

AX.

Converting floating point expressions to assembly

language

The FPU uses postfix (reverse, polish) notation, that places the

operator after the operands, as opposed to standard infix

notation, which places the operator between the operands.

a+b  ab+

Infix notation requires brackets to change the order of the

operations. Postfix notation does not need brackets:

(a+b)*(c+d)  ab+cd+*

 Write the expression ((a+b)/c)*(e-f) in postfix notation.

finit; st(0) st(1) st(2)

fld a; a

fld b; b a

fadd; a+b

fld c; c a+b

fld d; d c a+b

fadd; c+d a+b

fmul;(a+b)*(c+d)

(a+b)*(c+d)  ab+cd+*

=> first you have to push the operands onto the stack and then

execute the arithmetic or comparison instruction.

.data
A DD 1.5
B DD 2.5
C DD 3.0
D DD ?
.code

 Write a computer program that evaluates the expression

D = - A + (B * C).

Java Virtual Machine

The difference between a compiled and interpreted language:

Source

program
Compiler JVM

Input

Output

Source

program
Interpreter

Input

Output

Source

program
Compiler Target program

Input

Output

Intermediate

code

Java:

Java Virtual Machine

• interprets the intermediate code (bytecode)

• bytecode consists of simple instructions in assembly language

style

• bytecode is in the .class file that can be view by the javap

command

• stack machine - actual parameters (arguments) of the

method, local variables and operands

are stored in the memory organized

as a stack, all calculations are only

with the stack operands

(no registers) in reverse notation.

operands

local variables

arguments

Stack frame:

public void Sucet() {
 int x;
 int y=0;
 int z=1;
 x = y+z;
 }

0: iconst_0 load the int value 0 onto the stack
1: istore_2 pop int value from the stack and store it into

local variable 2
2: iconst_1
3: istore_3
4: iload_2 load an int value from local variable 2
5: iload_3
6: iadd pop two int values from the stack, add them and

push the result onto the stack
7: istore_1
8: return

Java:

Bytecode:

