
Flag setting instructions

clc

• set one flag, do not change the other flags

• do not have operands

stc

cmc

• inverts CF

cld

clear carry flag: CF =0

set carry flag : CF = 1

complement carry flag

clear direction flag: DF = 0

sti

lahf

• copies the lowest 8 bits of the EFLAGS register to AH:

sahf

cli

std

CF 1 PF 0 AF 0 ZF SF

0 1 2 3 4 5 6 7

• copies AH to the lowest byte of the EFLAGS register.

set direction flag: DF = 1

load flags into AH register

set interrupt flag: IF = 1

clear interrupt flag: IF = 0

store AH register to flags

String instructions

• useful when operating on arrays of type byte, word and

dword.

Before a string instruction is executed, ESI must be set to the

address (offset) of the source string and EDI to the address of

the destination string.

The ESI and EDI registers hold indexes to the strings; after the

operation (e.g. copy, comparison, ...) on one element of the

string was performed, the ESI and/or EDI registers are

automatically increased (if DF is 0) or decreased (if DF is 1)

by the size of the string element (1, 2 or 4 according to the

string type).

Value

of DF

Impact on

ESI and EDI

Direction of the

string operation

Addresses in the string

are accessed

0 increment forward from lower to higher

1 decrement backward from higher to lower

The type of the string may be specified either by the

operand (the name of the string variable) or by the postfix in

the instruction name (letter b, w, or d, respectively).

Prefix rep repeats the string instruction until the ECX

becomes zero. If ECX = 0 before the instruction, the

instruction is executed not once.

movs destination, source

movsb

movsw

movsd

• copies a data element from the location pointed by ESI

into the location pointed by EDI

• does not change flags nor EAX

move data from source string

to destination string

Instruction Copy ESI and EDI are

increased/decreased by

movsb byte 1

movsw word 2

movsd doubleword 4

.data
Source DD 20 DUP(0FFFFFFFFh)
Destination DD 20 DUP(0)
.code
main PROC
 cld; direction = forward
 mov ecx, length Source; the number of repetitions
 mov esi, offset Source; ESI points to Source
 mov edi, offset Destination; EDI points to Destination
 rep movs Destination,Source; or rep movsd
exit
main ENDP
END main

 Copy the array of 20 doublewords from variable Source to

variable Destination.

After the operation the ESI and EDI registers will point

behind the arrays.

 AC

 8A 06

 46

lods source string

lodsb

lodsw

lodsd

• copies a byte from the string to AL (resp. word to AX,

resp. dword to EAX)

• does not change flags

better!

load data from string

lodsb

the same as

mov al,[esi]
inc esi

cld
mov esi,offset String

stos destination string

stosb

stosw

stosd

• copies the contents of AL (resp. AX, resp. EAX) to the

string

• does not change flags

store data to string

 Set each element of Array to zero using instruction stosw.

.data
ArrayLength EQU 20
Array DW ArrayLength dup(0FFFFh)
.code
main PROC

exit
main ENDP
END main

 Set each element of Array to zero using instruction stosw.

.data
ArrayLength EQU 20
Array DW ArrayLength dup(0FFFFh)
.code
main PROC

cld; direction = forward
mov edi,offset Array
mov ecx,ArrayLength
xor ax,ax; AX = 0
rep stosw

exit
main ENDP
END main

scas destination string

scasb

scasw

scasd

• compares a byte (word or doubleword) of the string with

register AL (AX or EAX) in such a way that subtracts an

element of the string from AL (AX or EAX) and sets flags.

scan string

• compares strings in such a way that subtracts an element

of the destination string from an element of the source

string and sets flags

cmps destination, source

cmpsb

cmpsw

cmpsd

compare string operands

Prefix repe (repz) repeats the string instruction while ECX >

0 and ZF = 1. If ECX = 0 before the instruction, the

instruction is executed not once.

Prefix repne (repnz) repeats the string instruction while at

once ECX > 0 and ZF = 0. If ECX = 0 before the instruction,

the instruction is executed not once.

 Read the name of a file. Find the dot in it.

.data
FileName DB 20 dup(?)
.code
main PROC

 mov edx,offset FileName
 mov ecx,20
 call ReadString; read the file name

 mov ecx,eax; store the number of characters typed to ecx
 mov al,'.'
 cld
 mov edi,edx
 repne scasb; edi points behind '.', if it is there
 jne IsNot
 dec edi; edi point to '.'
IsNot:

Macroinstruction

Macro(instruction) is a block of text to which you assign a

name.

Whenever the compiler encounters that name in the source

code, it replaces the name by the actual block of text.

Comparing to a procedure, a macro is executed faster (call

and ret are not executed), but it does not save memory.

 Read three characters, store them to variables Letter1,

Letter2, Letter3, order them according to the alphabet and

write them.

.data
Letter1 DB ?
Letter2 DB ?
Letter3 DB ?
.code
ReadLetter MACRO paLetter
 call ReadChar
 call WriteChar
 mov paLetter,al
ENDM

WriteLetter MACRO WhichLetter
 mov al,Letter&WhichLetter
 call WriteChar
ENDM

The special symbol & concatenates two strings:

Letter and the actual parameter corresponding to

the formal parameter WhichLetter; we get the

name of a variable.

Order MACRO First,Second
LOCAL Finish
 mov al,First
 cmp al,Second
 jbe Finish
 xchg al,Second
 mov First,al
Finish:
ENDM

main PROC

 ReadLetter Letter1
 ReadLetter Letter2
 ReadLetter Letter3
 Order Letter1,Letter2
 Order Letter2,Letter3
 Order Letter1,Letter2
 WriteLetter 1
 WriteLetter 2
 WriteLetter 3

exit

main ENDP

END main

call ReadChar
call WriteChar
mov Letter1,al

mov al,Letter1
cmp al,Letter2
jbe ??0000
xchg al,Letter2
mov Letter1,al
??0000:

mov al,Letter2
cmp al,Letter3
jbe ??0001
xchg al,Letter3
mov Letter2,al
??0001:

mov al,Letter1
cmp al,Letter2
jbe ??0002
xchg al,Letter2
mov Letter1,al
??0002:

mov al,Letter1
call WriteChar

Directives for repeating blocks of statements

REPT the number of repetitions (constant)

 block of statements to be repeated

ENDM

Write MACRO
 i = 0
 REPT 3
 i = i + 1
 WriteLetter %i
 ENDM
ENDM

The special symbol % causes that i will be evaluated

to a number before using as the actual parameter.

main PROC
 ReadLetter Letter1
 ReadLetter Letter2
 ReadLetter Letter3
 Order Letter1,Letter2
 Order Letter2,Letter3
 Order Letter1,Letter2

 Write

 exit

main ENDP

mov al,Letter1
call WriteChar
mov al,Letter2
call WriteChar
mov al,Letter3
call WriteChar

Directives for repeating blocks of statements

IRP parameter,<arg1, arg2, ..., argN>

 block of statements – will be repeated N-times with

parameter being substituted by arg1, arg2, ..., argN

ENDM

WriteAll MACRO
 IRP Letter,<Letter1,Letter2,Letter3>
 mov al,Letter
 call WriteChar
 ENDM
ENDM

main PROC
 ReadLetter Letter1
 ReadLetter Letter2
 ReadLetter Letter3
 Order Letter1,Letter2
 Order Letter2,Letter3
 Order Letter1,Letter2

 WriteAll

 exit

main ENDP

Actual parameters may be:

• numbers

• strings

• symbolic constants

• variables

• registers

• labels

Two-dimensional arrays

They are usually stored by rows.

They are accessed using an indirect address with base,

index and displacement, where the displacement is the

name of the array:

name[base + index]

Base is the offset of the row relative to the beginning of

the array.

Index is the offset of the column relative to the beginning

of the row.

.data
Matrix DW 10h, 20h, 30h, 40h, 50h
DW 60h, 70h, 80h, 90h, 0A0h
DW 0B0h, 0C0h, 0D0h, 0E0h, 0F0h
RowLentgh EQU sizeof Matrix; 10 bytes

.code
main PROC

RowIndex EQU 1
ColumnIndex EQU 2

mov ebx, RowLength*RowIndex; offset of the row
mov esi, ColumnIndex
mov ax, Matrix[ebx + esi*type Matrix]; AX = 80h

 Store the element [1,2] of a two-dimensional array

Matrix to the ax register.

 Generate a matrix of 4 * 4 random non-negative numbers

of type word. Store it to the memory and display it.

We use the procedures:

Procedure Description
Input

parameters

Output

parameters

RandomRange

Generates a

random

number

 0; n-1.

EAX - n
EAX – generated

number

WriteInt
Write a signed

integer.

EAX –

number

.data
n EQU 4
Matrix DW n*n dup(?)
.code
NewLine MACRO

 mov al,0Dh
 call WriteChar
 mov al,0Ah
 call WriteChar
ENDM

GenerateMatrix PROC USES EAX ECX ESI
; generate n*n random numbers and store them to Matrix
 mov esi,0
 mov ecx,n*n
Generate:
 mov eax,8000h
 call RandomRange
 mov Matrix[esi*type Matrix],ax
 inc esi
 loop Generate
 ret
GenerateMatrix ENDP

DisplayMatrix PROC USES EAX EBX ECX ESI
 mov ebx,0
 mov ecx,n; number of rows
WriteRow:
 mov esi,0; column index
 push ecx; save row counter
 mov ecx,n; number of columns
Write:
 movzx eax, Matrix[ebx+esi*type Matrix]
 call WriteInt
 mov al,9; Tab – indent columns
 call WriteChar
 inc esi
 loop Write
 NewLine
 pop ecx; restore row counter
 add ebx,n*type Matrix; update offset of the next row
 loop WriteRow
 ret
DisplayMatrix ENDP

main PROC
 call GenerateMatrix
 call DisplayMatrix
 exit
main ENDP

 Write a procedure that sums numbers on the main

diagonal of the previously generated matrix. The

procedure returns the sum in the EAX register.

