
Stack

• is a part of memory (stack segment)

• stack segment is defined using the .stack directive

 In the included file SmallWin.inc in the sample project:

.STACK 4096

• it is managed by the processor using the ESP register

ESP 01

00

00

00

Stack instructions

push register/memory/number

• stores the operand on the top of the stack.

• The operand must be of type word or dword.

• A number occupies always 32 bits in the 32-bit mode.

ESP = ESP – 2(4), [ESP] = operand

Stack

push 1

pushad

• stores all general-purpose registers on the stack in the

order: EAX, ECX, EDX, EBX, ESP (original contents),

EBP, ESI, EDI

popad

• retrieves all general-purpose registers from the stack

in the order EDI, ESI, EBP, the next dword is ignored,

EBX, EDX, ECX, EAX

pop register/memory

• retrieves the operand from the stack.

• The operand must be of type word or dword.

 operand = [ESP], ESP = ESP + 2(4)

pushf

• stores the lower half of the EFLAGS register on the stack

pushfd

• stores the EFLAGS register on the stack

popf

• retrieves the lower half of the EFLAGS register from the

stack

popfd

• retrieves the EFLAGS register from the stack

Instructions popf and popfd change flags, the other stack

instructions do not.

Procedures

Declaration:

name PROC [language] [USES registers] [,parameters]

 the body of the procedure

 ret; return to the calling program

name ENDP

A label is visible only in the procedure in which it is defined.

the address of the first instruction

in the procedure

Procedure call

call name of the procedure

Indirect: call register/memory

Direct:

• stores the return address on the stack and jumps to the

first instruction of the procedure.

The return address is the current contents of the EIP

register, i.e. the offset of the instruction following the call

instruction.

call is compiled in the same way as jmp.

ret [number]

• retrieves the return address from the stack and stores it

to EIP.

• If the instruction has a direct operand (number), it is

added to the ESP register after the return address is

retrieved from the stack.

Procedure return

displacement: -7

Machine code:

 .code
 Nothing PROC
004033F0 90 nop
004033F1 C3 ret
 Nothing ENDP

 main PROC
004033F2 E8 F9 FF FF FF call Nothing
004033F7 33 C0 xor eax,eax

0018FF88 ?

?

?

?

 0018FF8C ?

Stack
At the beginning of the main

procedure:

004033F2 EIP

0018FF8C ESP

After call Nothing:

004033F0 EIP

0018FF88 ESP

0018FF88 F7

33

40

00

0018FF8C ?

Stack After nop:

004033F1 EIP

0018FF88 ESP

After ret:

0018FF88 F7

33

40

00

0018FF8C ?

0018FF88 F7

33

40

00

 0018FF8C ?

004033F7 EIP

0018FF8C ESP

Procedures with parameters

Parameters may be passed:

• in general-purpose registers

– in pure assembly language programs

– fast

– disadvantage: the original contents of the registers

must be saved before the parameters are loaded into

them

• in the stack

Passing parameters in the stack

Before the procedure call, the parameters are pushed on the

stack. In the procedure, the parameters are accessed using

the indirect addressing mode with the base register EBP.

Two ways to pass parameters:

• pass by value – the caller passes the value of the

parameter; input-only parameters.

• pass by reference – the caller passes the address of a

variable; is useful when the procedure modifies the actual

parameter or when you pass large data structures

between procedures.

 Write a procedure that adds a given number to each

element of an array of type byte. Parameters of the

procedure include:

• the address of the array

• the length of the array (in bytes)

• the number to be added

The address is passed by reference, the other

parameters are passed by value.

.data
Array DB 0,1,2,3,4
ArrayLength DD lengthof Array
Number EQU 1

.code

main PROC
 push offset Array
 push ArrayLength
 push Number
 call ArrayAdd

 exit
main ENDP

Procedure ArrayAdd

comes here.

ESP return address

ESP + 4 Number

ESP + 8 ArrayLength

ESP + 12 offset Array

ESP + 16 ?

Stack after call ArrayAdd:

ArrayAdd PROC
 mov ebp,esp
 mov ebx,[ebp+12]; offset
 mov ecx,[ebp+8]; length
 mov al,[ebp+4]; number
Next:
 add [ebx],al
 inc ebx
 loop Next
 ret 12 ; retrieves the return address and adds 12
 ; to ESP to discard the parameters
 ; from the stack
ArrayAdd ENDP

Procedure:

ESP return address

ESP + 4 Number

ESP + 8 ArrayLength

ESP + 12 offset Array

ESP + 16 ?

Stack after call ArrayAdd:

Formal parameters

Directive PROC allows you to assign formal names to the

parameters. Then the procedure accesses the parameters

using their names instead of the indirect addresses with

the EBP register.

Advantages:

• more readable source code in the procedure

• you need not remember the offset of the parameter

relative to the top of the stack.

You may define the type for each formal parameter. If the

type is not specified, dword is supposed.

Language
Parameters are

pushed on the stack

Who discards the

parameters

Pascal

Basic

Fortran

from left to right
procedure

(using ret n)

C

Prolog
from right to left

calling program

(add esp,n)

stdcall

(in 32-bit

applications,

when Windows

services are

called)

from right to left procedure

Calling procedures according to a high-level

language conventions

ArrayAdd PROC paOffset, paLength, paNumber:byte
 mov ebx,paOffset
 mov ecx,paLength
 mov al,paNumber
Next:
 add [ebx],al
 inc ebx
 loop Next
 ret
ArrayAdd ENDP

The compiler automatically

includes at the beginning of the

procedure:
push ebp
mov ebp,esp

and at the end of the procedure:
leave
ret 0Ch

mov esp,ebp
pop ebp

In Irvine32.inc: INCLUDE SmallWin.inc
In SmallWin.inc: .MODEL flat, stdcall

Procedure with formal parameters and stdcall

specification

main PROC
 INVOKE ArrayAdd, offset Array, ArrayLength,Number
 exit
main ENDP

Calling procedure with actual parameters

INVOKE is translated into:
push 1
push dword ptr ds:[406005h]
push 406000h
call ArrayAdd

Comment

The procedure must be declared before INVOKE.

ArrayAdd PROC USES eax ebx ecx paOffset, paLength,
paNumber:byte
 mov ebx,paOffset
 mov ecx,paLength
 mov al,paNumber
Next:
 add [ebx],al
 inc ebx
 loop Next
 ret

ArrayAdd ENDP

The compiler automatically includes

at the beginning of the procedure:
push ebp
mov ebp,esp
push eax
push ebx
push ecx

and at the end of the procedure:
pop ecx
pop ebx
pop eax
leave
ret 0Ch

Preserving affected registers in the procedure

Local variables

Local variables exist only during the procedure execution;

they disappear before the procedure returns.

Local variables are allocated in the stack above the return

address and the stored EBP from the main program.

Syntax:

LOCAL variable1 [, variable2] ...

Example:

LOCAL Sum:byte, String[8]:byte

lea edx,String; store offset of String into edx

ArrayAdd PROC USES eax ebx ecx paOffset, paLength,
paNumber:byte
 LOCAL Sum:byte
 mov ebx,paOffset
 mov ecx,paLength
 mov al,paNumber
 mov Sum,0
Next:
 add [ebx],al
 mov ah,[ebx]
 add Sum,ah
 inc ebx
 loop Next
 ret
ArrayAdd ENDP

The compiler automatically includes

at the beginning of the procedure:
push ebp
mov ebp,esp
add esp,0FFFFFFFCh; -4
push eax
push ebx
push ecx

and at the end of the procedure:
pop ecx
pop ebx
pop eax
leave
ret 0Ch

 Modify the procedure ArrayAdd so that to sum all elements

of the Array. The sum will be in the local variable Sum.

locations that can be used

in the procedure

ESP Sum

EBP caller’s EBP

EBP + 4 return address

EBP + 8 offset Array

EBP + 12 ArrayLength

EBP + 16 Number

EBP + 20 ?

Stack after add esp,-4:

