
Jump instructions

• do not change flags

Unconditional jumps

jmp label

Direct jump

 jmp Continue
 xor eax,eax
Continue: xor ecx,ecx

displacement = the difference

between the target label and

EIP (may also be negative)

The processor executes the jump by adding the displacement

to the current value of EIP (EIP = 0040340C + 2 = 0040340E) =>

EIP will point to the instruction at which the program

execution shall continue.

Machine code:

0040340A EB 02 jmp Continue
0040340C 33 C0 xor eax,eax
0040340E 33 C9 Continue: xor ecx,ecx

Indirect jump

jmp register/memory

A 32-bit operand contains the offset of the instruction,

at which the program execution shall continue.

 Example: Write the string by letters.

.data
String DB “Hello!",0Dh,0Ah,0
Adr DD ?

.code

main PROC
 mov Adr,offset Stop
 mov ecx,offset WriteLetter
 mov edx,offset String
 mov edi,0
WriteLetter: mov al,[edx+edi]
 cmp al,0
 jne Continue; conditional jump cannot be indirect
 jmp Adr; jump to Stop
Continue: call WriteChar
 inc edi
 jmp ecx; return to WriteLetter
Stop:
exit
main ENDP

Conditional jumps

They allow to branch program execution according to

the flags ZF, CF, OF, SF and PF.

jcc label

cc ... condition code

Conditional jumps must be direct.

Instruction Meaning – jump if Condition

jb

jnae

jc

below

not (above or equal)

carry

CF = 1

jae

jnb

jnc

above or equal

not below

not carry

CF = 0

jbe

jna

below or equal

not above
CF = 1 or ZF = 1

ja

jnbe

above

not (below or equal)
CF = 0 and ZF = 0

After comparison of unsigned numbers:

 0000 0001 (= 1)

 - 100 (= 4)

(1)1111 1101

CF = 1

mov al,1
cmp al,4

Instruction Meaning – jump if Condition

jl

jnge

less

not (greater or equal)
SF OF

jge

jnl

greater or equal

not less
SF = OF

jle

jng

less or equal

not greater
ZF = 1 or SF OF

jg

jnle

greater

not (less or equal)
ZF = 0 and SF = OF

After comparison of signed numbers:

 1111 1111 (= -1)

 - 100 (= 4)

 1111 1011

OF = 0

SF = 1

mov al,-1
cmp al,4

Instruction Meaning – jump if Condition

je

jz

equal

zero
ZF = 1

jne

jnz

not equal

not zero
ZF = 0

jp

jpe

parity

parity even
PF = 1

jnp

jpo

not parity

parity odd
PF = 0

js sign SF = 1

jns not sign SF = 0

jo overlfow OF = 1

jno not overflow OF = 0

jcxz CX is 0 CX = 0

jecxz ECX is 0 ECX = 0

Loop instructions

• do not change flags

loop label

• Decrements the ECX register and compares it with 0

leaving the flags unchanged. If new ECX > 0, jumps to the

label. Otherwise the program execution continues with

the next instruction.

• Label is at the first instruction of the loop.

 Read a natural number n 2; 20. Calculate the second,

third, etc. to the nth number of the Fibonacci sequence.

F(0) = 0

F(1) = 1

F(2) = 1

F(3) = 2

...

F(n) = F(n-1) + F(n-2)

.data
Fibonacci DW 0, 1, 19 dup(?)
.code
main PROC
 call ReadInt; eax = n
 mov ecx,eax
 dec ecx; loop is executed (n-1)-times
 mov edi,0; i-2
 mov esi,1; i-1
Next:
 mov ax,Fibonacci[2*edi]
 add ax,Fibonacci[2*esi]
 inc edi
 inc esi
 mov Fibonacci[2*esi],ax
 loop Next
exit
main ENDP

F(0) = 0; F(1) = 1;
for (i = 2; i <= n; i++)
 F(i) = F(i-1) + F(i-2);

.code
main PROC
 call ReadInt; eax = n
 mov ecx,eax
 mov edi,0
 mov esi,1; esi = i
Next:
 cmp esi,ecx
 jnb Stop
 mov ax,Fibonacci[2*edi]
 add ax,Fibonacci[2*esi]
 inc edi
 inc esi
 mov Fibonacci[2*esi],ax
 jmp Next
Stop: exit
main ENDP

F(0) = 0; F(1) = 1; i = 1;
while (i < n) {
 i++; F(i) = F(i-1) + F(i-2);
}

.code
main PROC
 call ReadInt; eax = n
 mov ecx,eax
 mov edi,0
 mov esi,1; esi = i
Next:
 mov ax,Fibonacci[2*edi]
 add ax,Fibonacci[2*esi]
 inc edi
 inc esi
 mov Fibonacci[2*esi],ax
 cmp esi,ecx
 jb Next
exit
main ENDP

F(0) = 0; F(1) = 1; i = 1;
do {
 i++; F(i) = F(i-1) + F(i-2);
} while (i < n);

 Calculate the Hamming distance of word variables

Number1 and Number2 (the number of positions at

which the corresponding bits are different).

loope label

loopz label

• Decrements the ECX register and compares it with 0

leaving the flags unchanged. If new ECX > 0 and ZF = 1,

jumps to the label.

loopne label

loopnz label

• Decrements the ECX register and compares it with 0

leaving the flags unchanged. If new ECX > 0 and ZF = 0,

jumps to the label.

 Read characters typed on the keyboard and store them to

variable String until Enter is pressed or MaxNumber

characters have been typed.

.data
MaxNumber EQU 80
String DB MaxNumber dup(?)

.code

main PROC
 mov ecx,MaxNumber
 jecxz Stop
 mov edx,offset String
 mov edi,0
Next: call ReadChar
 call WriteChar
 mov [edx+edi],al; store the letter to String
 inc edi
 cmp al,0Dh; Enter was typed?
 loopne Next; repeat if not
Stop:
exit
main ENDP

