
Instructions moving data

mov register/mem, register/mem/number (move data)

• do not affect flags.

4069D0h 56h

mov al,Sum; value 56h  al
mov ebx,offset Sum; address 4069D0h  ebx

56h

AL

address of variable Sum

(offset in the data

segment)

The difference between the value and the address of a

variable

better!

When moving data to and from memory, the EAX

register (or its part) is usually used, because:

One DB 1

mov bl,One  8A 1D D0 69 40 00

mov al,One  A0 D0 69 40 00

Hyde, R.: The Art of Assembly Language Programming,

cap. 5.4 Encoding 80x86 Instructions

mov ebx,offset Table[edi]

Operator offset cannot be used to get the address of a

memory location pointed to by an indirect addressing mode

(using a base or index register).

 Store the address of variable Table increased by EDI to EBX.

Does not work! (“Invalid operand for offset.”)

lea register,memory (load effective address)

• loads the offset of a memory location to a general-

purpose register.

lea ebx,Table is the same as mov ebx,offset Table

better!

lea ebx,Table  8D 1D 10 60 40 00

mov ebx,offset Table  BB 10 60 40 00

lea ebx,Table[edi]; store the address of variable
Table increased by EDI to EBX

movzx register, register/memory (move with zero-extend)

• copies the right operand into the lower half of the left

operand and sets the upper half to 0

movzx bx,dl is the same as mov bl,dl
 mov bh,0

movsx register, register/memory (move with sign-extend)

• copies the right operand into the lower half of the left

operand and duplicates the highest order bit of the right

operand throughout the upper half of the left operand.

Number DB -5

movsx ax,Number; ax = 1111 1111 1111 1011

is the same as

mov al,Number
mov ah,0FFh

xchg register/memory, register/memory (exchange)

• exchanges the contents of the operands

Arithmetic instructions

add register/memory, register/memory/number (add)

• affect flags ZF, CF, OF, SF, AC, PF

• adds the operands, stores the result to the left

operand

sub register/memory, register/memory/number (subtract)

• subtracts the right operand from the left one, stores

the result to the left operand

adc register/mem,register/mem/number (add with carry)

• adds the operands and CF, stores the result to the left

operand

• useful when adding operands longer than a general-purpose

register

X DQ 0FEDCBA98h ; 98 BA DC FE 00 00 00 00
Y DQ 10000000h ; 00 00 00 10 00 00 00 00
Z DQ ?; Z = X + Y

1.

mov eax,dword ptr X; eax = FEDCBA98
add eax,dword ptr Y; eax = 0EDCBA98, CF = 1
mov dword ptr Z,eax
mov eax,dword ptr X+4; eax = 0
adc eax,dword ptr Y+4; eax = 1
mov dword ptr Z+4,eax

2.

better!

add edi,1  83 C7 01

inc edi  47

sbb register/memory,register/memory/number (subtract

with borrow)

• subtracts the right operand and CF from the left operand,

stores the result to the left operand

• useful when subtracting operands longer than a general-

purpose register

inc register/memory (increment)

• increments the operand by 1

• does not affect CF!

cmp register/memory, register/memory/number (compare)

• compares the operands: subtracts the right operand

from the left one, sets flags according to the result

(does not store the result itself)

dec register/memory (decrement)

• decrements the operand by 1

• does not affect CF!

• If the upper half of the result is 0, then OF and CF are

set to 0.

• Otherwise OF and CF are set to 1.

mul register/memory (unsigned multiply)

Operand type Multiplied by Result

byte AL AX

word AX DX:AX

dword EAX EDX:EAX

If the upper half of the result is a signed extension of the

lower half, then OF and CF are set to 0, otherwise to 1.

imul register/memory (signed multiply)

• multiplication of signed numbers

• implicit operands as mul

imul register, register/memory/number

• left operand = left * right

• Both operands must be of the same type (word or dword).

 imul dx,word ptr [edi]

imul register, register/memory, number

• left operand = intermediate * right

• The leftmost and intermediate operands must be of

the same type (word or dword).

 Divide decimal number 4001 in the AX register by ten.

mov dx,0

mov bx,10

div bx; ax = 400, dx = 1

If the divisor is zero or the quotient does not fit into the

implicit register, an internal interrupt is generated.

div register/memory (unsigned divide)

• integer division of unsigned numbers

Dividend
Type of the

operand (divisor)
Quotient Remainder

AX byte AL AH

DX:AX word AX DX

EDX:EAX dword EAX EDX

idiv register/memory (signed divide)

• integer division of signed numbers

• implicit operands as div

Sign extension

If you want to divide signed operands of the same type,

you must sign extend the dividend.

cbw (convert byte to word)

• Converts the byte in AL to a word in AX via sign extension

(bit 7 of the AL register is copied into all bits of the AH

register).

 Divide decimal number -15 in BH by 7 in BL.

mov al,bh; al = 0F1h = -15
cbw; ax = 0FFF1h = -15
idiv bl; al = 0FEh = -2, ah = 0FFh = -1

cwd (convert word to doubleword)

• Converts the word in AX to a doubleword in DX:AX.

• Converts the word in AX to a doubleword in EAX.

cwde (convert word to doubleword extended)

cdq (convert doubleword to quadword)

• Converts the doubleword in EAX to the quadword in

EDX:EAX.

Instructions cbw, ... do not affect flags.

mov al,-15 ; al = -15 = 11110001b
neg al ; al = 15 = 00001111b
mov bl,al ; bl = 15
neg bl ; bl = -15

neg register/memory (two’s complement negation)

• switches the sign of the operand (replaces the operand by

its two’s complement)

Logical instructions

• perform logical operations on the corresponding bits

of the operands. The result is stored to the left

operand.

• set flags:

• CF and OF to 0

• ZF, SF, PF according to the result of the operation

• AC remains undefined

and register/memory, register/memory/number

• is useful when a single bit (several bits) of the left operand

are to be set to 0. The right operand is a mask having 0 in

the given bits and 1 in the other bits.

 Set the 3rd bit of BL to zero.

 and bl,11110111b

 Convert the ASCII code of a digit to the value.

‘0’ = 00110000b, ‘1’ = 00110001b, ...

mov al,’9’
and al,00001111b; ’9’  9

or register/memory, register/memory/number

• is useful when a single bit (several bits) of the left operand

are to be set to 1. The right operand is a mask having 1 in

the given bits and 0 in the other bits.

 Set the 3rd bit of BL to 1.

 or bl,00001000b

 Convert a number to the ASCII code of the corresponding

digit:

mov al,9
or al,110000b; 9  ’9’

better!

xor register/memory, register/memory/number

• is useful when a single bit (several bits) of the left

operand are to be inverted. 1 in the mask inverts the

corresponding bit, 0 leaves the bit unchanged.

 Invert the upper 4 bits of the BL register.

 mov bl,01010101b
 xor bl,11110000b ; bl = 10100101b

 Set the ECX register to zero:

mov ecx,0  B9 00 00 00 00

xor ecx,ecx  33 C9

test register/memory, register/memory/number (logical

compare)

• AND without saving the result

• is useful when we want to branch the execution according

to the value of a chosen bit of the left operand.

 Branch according to the 3rd bit of the BL register.

 test bl,00001000b

 jz Zero; 3rd bit is 0

 One: ...

not register/memory (one’s complement negation)

• inverts all bits of the operand

• does not change flags

Shift and rotate instructions

The left operand is a register or memory location (byte,

word or doubleword), whose bits are shifted or rotated to

the left or right.

The right operand is a constant or register CL. The right

operand determines the number of positions to shift.

Shift instructions

• set flags:

• CF, OF, ZF, SF, PF according to the result of the operation

• AC - undefined

shl register/memory, number/CL (shift logical left)

• useful for fast doubling (or multiplying by 4, 8 or 16)

unsigned numbers.

 shl dx,4; dx = 16*dx

sal register/memory, number/CL (shift arithmetic left)

shr register/memory, number/CL (shift logical right)

• halving (or dividing by 4, 8 or 16) unsigned numbers

• halving (or dividing by 4, 8 or 16) signed numbers

mov bl,-4 ; bl = -4 = 11111100b
sar bl,1 ; bl = -2 = 11111110b

sar register/memory, number/CL (shift arithmetic right)

Rotate instructions

• set CF and OF

rol register/memory, number/CL (rotate left)

ror register/memory, number/CL (rotate right)

rcl register/memory, number/CL (rotate left through carry)

• useful when doubling operands longer than 32 bits. Because

one operation can shift at most 32 bits, shifts of longer

operands must be done by parts.

 Double variable BigNumber of type qword.

shl dword ptr BigNumber,1
rcl dword ptr BigNumber + 4,1

rcr register/memory, number/CL (rotate right through carry)

Bit set

To store a set in bits we need as many bits as there are all

possible elements of the set.

 Example:

Let variable setX is a bit set representing a subset of all

integers  0, 31. Further, let the AL register store
number a  0, 31. Add number a to the set setX.

