
implicit operands

Addressing modes

1. Implicit addressing mode

• the operand is not written in the instruction.

 mul bx; bx * ax dx:ax

The different ways in which the location of the operand is

specified in an instruction are referred to as addressing

modes.

immediate operand

• the number on which the instruction is to operate is

written in the instruction.

mov al,3; 3 al

2. Explicit addressing modes

Immediate operand

0040602A

direct address

Direct addressing mode
• the name of a register or the name of a variable.

mov al,Sum; [Sum] al

AL

address of

variable Sum

(offset in the

data segment)

0040602A

Direct address can be combined with a constant index:

mov al,Sum+2; [Sum+2] al

mov al,Sum[2]; [Sum+2] al

AL
address of

variable Sum

(offset in the

data segment)

Indirect register addressing modes

Register(s) in the instruction contains the address of the

operand.

The register may be a base register and/or index register. A

constant displacement may be added.

Address = base + index + displacement

Protected mode:

Every 32-bit general-purpose register can be used as a base

register or (except ESP) as an index register.

Which memory segment will be used depends on base register:

• EAX, EBX, ECX, EDX, ESI, EDI => data segment.

• EBP, ESP => stack segment.

0040602A

AL

indirect address with a base

mov al,[ebx]

EBX

00 2A 60 40

0040602A

0040602C

AL

indirect address with a base and displacement

mov al,[ebx+2]

EBX

00 2A 60 40

0040602A

0040602C

indirect address with a base and index

mov al,[ebx+esi]

AL

2

ESI

EBX

00 2A 60 40

0040602A

0040602C

indirect address with an index and displacement

mov al,[Sum + esi] or

mov al,Sum[esi]
The name of a variable is

taken as a displacement:

ESI

AL

2

address of variable Sum

Index register can be multiplied by 2, 4 or 8 to make the

access to word, dword, and qword arrays faster.

 Example:

Table is an array of type word. Store the first word to AX:

mov esi,0
mov ax,[Table+esi]

Table:

AX

inc esi
inc esi
mov ax,[Table+esi]

or

inc esi
mov ax,[Table+2*esi]

Store the second word to AX:

better!

Indirect addressing is useful when operating with data arrays:

• base register – points to the array (contains the address of

the first element)

• index register – contains the index of an element

Coding:

mov al,[Str+edi] 8A 87 00 60 40 00

mov al,[edx+edi] 8A 04 17

mov [Str],’*’ C6 05 00 60 40 00 2A

mov byte ptr [edx],’*’ C6 02 2A

The basic elements of an assembly language program

Statements – one per line.

The format of a line:

[identifier] instruction/directive [operands] [; comment]

Identifier

• name of a variable = symbolic address of a data object

(offset in the data segment)

• label, name of a procedure = symbolic address of an

instruction (offset in the code segment)

• symbolic constant

• name of a segment

Make your labels meaningful!

cmp al,’a’
jb N1
cmp al,’z’
ja N1
sub al,20h
N1:

Better:

cmp al,’a’
jb NotALowerCaseLetter
cmp al,’z’
ja NotALowerCaseLetter
sub al,20h
NotALowerCaseLetter:

 Find out whether register AL contains a code for a lower

case letter. If yes, convert it to the corresponding upper

case letter.

Comment your code!

Comment through multiple lines:

COMMENT !

 This line is a comment.

 This line is also a comment.

!

or:

COMMENT /*

 This line is a comment.

 This line is also a comment.

*/

Directives

• define constants, variables, labels, segments, procedures

and macros

• enable compilation of instructions from the enhanced

instruction set, e.g.:

.686P; enables assembly of all instructions for
the Pentium Pro processor

 (in include file SmallWin.inc)

 .MMX; enables assembly of MMX instructions

• control the contents and format of the program listing

(report from the compilation)

• control conditional compilation (e.g. directives IF, ENDIF,

ELSE)

They are not compiled to a machine code, but they can:

Operands

• registers

• addresses (see addressing modes)

• numbers, symbolic constants

Possible operands:

• none operand

• 1 operand

• 2 operands

▫ the right one (source) : register, memory, number

▫ the left one: register, memory

 If the operands are registers or memory locations, they

must be of the same types:

 mov ax,bl

 Two memory operands are not allowed in the

instruction!

• 3 operands

▫ imul register, register/memory, number

An instruction may have:

Variables

• determines the variable type (according to the letter x)

• allocates the space in memory (one or more data items)

• initializes the contents of the memory locations (does not

initialize, if the expression is ?)

• symbolic addresses of data items (offsets in the data

segment)

• defined by directives DB, DW, DD, DF, DQ, DT.

Syntax:

[name of the variable] Dx expression [,expression] ...

Directive Dx:

Directi

ve

Size of the

allocated

memory in

bytes

Variable

type
Variable may contain

DB 1 byte Signed integer in the range -128; 127

Unsigned integer in the range 0; 255

Character

DW 2 word Signed integer in the range -32 768; 32 767

Unsigned integer in the range 0; 65 535

16-bit offset

DD 4 dword Signed integer

Unsigned integer

Single precision floating point number in the

range about ±1038

Far pointer in 16-bit mode, i.e. address in

the segment:offset form

32-bit offset

Directive

Size of the

allocated

memory in

bytes

Variable

type
Variable may contain

DF 6 fword Signed integer

Unsigned integer

Far pointer in 32-bit mode, i.e.

address in the segment:offset form

DQ 8 qword Signed integer

Unsigned integer

Double precision floating point

number in the range about ± 10308

DT 10 tbyte Signed integer

Unsigned integer

Packed BCD number

Extended precision floating point

number in the range about ± 104932

.data

;contents of memory locations from the offset 4069D0h

One DB –1,12+1 ; FF 0D

 DB ’abcd’ ; 61 62 63 64

 DB 3 dup(?) ; ?? ?? ??

 DD 0.3 ; 9A 99 99 3E

 DD 0ABCDEF23h; 23 EF CD AB

 DT 10 ; 0A 00 00 00 00 00 00 00 00 00

 DW -32768 ; 00 80

Multi-byte data are

stored in the

reverse order of

bytes.

 DD One ; D0 69 40 00

4069D0h is offset

of variable One

Operator Purpose

offset Gets offset of the variable.

type Returns the value according to the type of the variable

1 byte

2 word

4 dword

6 fword

8 qword

10 tbyte

length Gets the number of data items allocated to the variable by the

first expression.

size Gets the number of bytes allocated to the variable by the first

expression, i.e. the value length * type.

lengthof Gets the number of data items allocated to the variable.

sizeof Gets the number of bytes allocated to the variable, i.e. lengthof

* type.

ptr Overwrites the type of the variable.

Value DW 1234h

Vector DB 5,6,7

Table DW 5 dup(?),1000

mov al,type Value; al = 2

mov bl,type Vector; bl = 1

mov cl,type Table; cl = 2

mov al,length Value; al = 1

mov cl,size Table; cl = 10

mov cl,lengthof Table; cl = 6

mov cl,sizeof Table; cl = 12

length returns value > 1 only if

the variable has been defined

using operator dup

mov bl,length Vector; bl = 1

mov cl,length Table; cl = 5

String : ‘H’

String + 1: ’e’

String + 2: ’ l’

String + 3: ’l’

String + 4: ’o’

String + 5: ’!’

String + 6: 0Dh

String + 7: 0Ah

sizeof String

 Display the string „Hello!“ stored in variable String (without

termination character).

TITLE MASM String(main.asm)

INCLUDE Irvine32.inc

.data
String DB “Hello!",0Dh,0Ah

.code

main PROC
 mov edx,offset String ; point edx to the memory location for
 ; the first character
 mov edi,0; the 1st character has index 0
 mov ecx,lengthof String
Display:
 mov al,[edx+edi]; copy the character at offset edx+edi to al
 call WriteChar; display the character whose ASCII code is in
 ;al
 inc edi; increment index by 1 (to the next character)
 loop Display; ecx = ecx – 1, if ecx > 0, jump to Display

exit
main ENDP

END main

Value: 34h

12h

Number: 5

6

12h

AX

34h

Value DW 1234h
Number DB 5,6

mov ax,Value; al = 34h, ah = 12h

Value: 34h

12h

Number: 5

6

34h

AH

06h

BX

05h

mov ah,byte ptr Value; ah = 34h

mov bx,word ptr Number; bx = 605h the same as
mov bl,Number
mov bh,Number+1

mov [ebx],1

byte?

word?

mov byte ptr [ebx],1
mov word ptr [ebx],1

word!

byte!

Similar problem: inc [ebx]

Vector : 01

Vector + 1: 00

Vector + 2: FF

Vector + 3: 00

... ...

Vector + 10: 00

Vector + 11: 00

Vector + 12: 00

Vector + 13: 01

1

255

256

 Find out, how many zero components are in variable Vector

of type word.

TITLE MASM Index_v1 (main.asm)

INCLUDE Irvine32.inc

.data
Vector DW 1,255,0,0,0,0,256

.code
main PROC
 mov bl,0; counter
 mov ecx,lengthof Vector ; save the number of components to ecx
 mov edx,offset Vector; point edx to Vector
 mov edi,0; the 1st component has index 0
Compare: cmp word ptr [edx+edi],0
 jne Continue
 inc bl
Continue:
 inc edi; increment index by 2
 inc edi
 loop Compare
Finish:
 exit
main ENDP

END main

TITLE MASM Index_v1 (main.asm)

INCLUDE Irvine32.inc

.data
Vector DW 1,255,0,0,0,0,256

.code
main PROC
 mov bl,0; counter
 mov ecx,lengthof Vector ; save the number of components to ecx
 mov edx,offset Vector; point edx to Vector
 mov edi,0; the 1st element has index 0
Compare: cmp word ptr [edx+2*edi],0
 jne Continue
 inc bl
Continue:
 inc edi; increment index

 loop Compare
Finish:
 exit
main ENDP

END main

better! (one less inc)

Symbolic constants

• make the orientation in the program and its modification
easier

• defined by directive EQU

