
Back-end

Front-end

L2 Cache

(256 KB)

L1 Instruction Cache

(32 KB)

Pre-decode

Instruction Queue

5 decoders
 Allocation Queue

(128 ops)
Out-of-Order Unit

Execution Units

L1 Data Cache

(32 KB)

Individual core

Branch

Prediction

 L0 μop Cache

(1536 ops)

Instruction Fetch Unit

Front-end

Pre-decode

Goal:

• identify instruction borders (variable instruction

length – 1 to 17 bytes)

• decode prefixes (e.g. repetition of the string

instruction, change of the default operand size, ...)

Decoding

Processor divides the instruction into basic steps –

micro-ops (ops) that allow

• better parallelization and

• simpler execution units.

For example:

 add eax,[mem1]

generates 2 ops:

1. read from memory to a temporary register,

2. add the contents of the temporary register to EAX

Instruction Fetch Unit is looking for the next instruction

simultaneously in L1 instruction cache and L0 op cache. If

the instruction is contained within the µop cache, the

decoding step can be skipped.

Back-end

mov ebx,Address

mov ecx,2000

mov eax,[ebx]

mov ecx,2000

mov ebx,Address

mov eax,[ebx]

The out-of-order execution logic analysis the stream of

decoded instructions in Allocation Queue and schedules

them for execution in whatever order best matches the

available computer resources (execution units). Out-of-order

execution allows execution units to be kept as busy as

possible executing independent instructions that are ready

to execute.

Out-of-order execution

Two techniques enable out-of-order execution:

1. decomposition of the instruction into micro-ops

mov eax,[mem1]

imul eax,5; eax = eax * 5

add eax,[mem2]; generates 2 ops (1. read from
memory to a temporary register, 2. add the contents
of the temporary register to EAX)

Processor can fetch the value from location mem2
simultaneously with the execution of the multiplication.

2. register renaming

 Processor has physical registers that are invisible to a

programmer. Operations are performed using these „alias“

registers. Every time an instruction writes to a logical register,

processor assigns a new alias register to this logical register.

In the following example, let us suppose that [mem1] is in L1

cache, [mem2] is not. Thanks to register renaming the

multiplication can start before the addition (imul works with

other physical register than add; old value of EAX remains in

the physical register until EBX is ready for addition).

mov eax,[mem1]

mov ebx,[mem2]

add ebx,eax

imul eax,5

The retirement logic reorders the instructions back to the

original program order:

• The result of the instruction is stored to the destination

register or to Level 1 Data Cache after all the previous

instructions have been finished.

• An internal interrupt (exception) is served only if the

instruction causing the exception is the oldest, non-

retired operation in the machine.

This logic also reports branch history information to the

branch predictors at the front end of the machine.

Superscalar architecture

• The processor has several execution units.

Skylake has 8 ports for connection of execution units, which

means, that up to 8 micro-ops can be executed in parallel.

There are 27 execution units.

Execution Units

• computation units

• Arithmetic and Logic Units (ALU) – integer math, logic

operations

• separate units for integer multiplication and division

• units for integer vector operations in SIMD technology

• Floating Point Units (FPU)

• branch units - handle branch instructions

• memory units

• load and store address calculation (Address Generation

Unit)

Hyper-Threading Technology (HTT)

Intel introduced HTT in 2002.

HTT supports parallelization of computations. The main

function of hyper-threading is to increase the number of

independent instructions in the pipeline and thus to maximize

the utilization of execution units in the core.

With HTT, one physical core appears as two processors to the

operating system, allowing concurrent scheduling of two

processes per core. If resources for one process are not

available, then another process can continue if its resources

are available. This technology is transparent to operating

systems and programs.

Each core will see instructions from up to two threads at the

same time.

SIMD technology

Multimedia and communications applications:

• usually process 8-bit (pictures) and 16-bit (sound)

data,

• frequently read and write to memory,

• the same operation (addition, multiplication) is

repeated over and over for multiple pieces of data.

SIMD technology (Single Instruction Multiple Data) – the

same operation is performed on independent data entries in

parallel.

Intel: MMX, SSE, SSE2, SSE3, SSE4, AVX, AVX2

MMX technology (MultiMedia eXtension)

An arithmetic or logic operation is performed in parallel

on all entries (integers) of 64-bit operands (vectors).

MMX registers are identical with FPU registers.

4 words:

2 doublewords:

64 bits = 8 bytes:

+ + + + + + + +

SSE technology (Streaming Simd Extension)

• 256-bit extension of SSE (registers YMM)

• new instructions with 3 operands

SSE2 technology

• new instructions

SSE3, SSE4 technology

XMM registers can contain:

• two double-precision (64-bit) floating point numbers

• integers (bytes, words, doublewords, quadwords)

• 8 new 128-bit registers (XMM0 až XMM7)

• each register packs together four 32-bit single-precision

floating point numbers

• 70 new instructions

AVX technology (Advanced Vector Extensions)

Architecture Skylake brings new instructions

SGX – Software Guard Extension

• new bounds registers and instructions that allow

checking pointer references at runtime

MPX – Memory Protection Extension

• new instructions that allow user-level code to allocate

private regions of memory, called enclaves, that are

protected from processes running at higher privilege

levels

Segmentation = memory management scheme

Logical

(virtual)

address

base address

offset

(displacement

relative to the

beginning of the

segment)

base address

segment =

block of

memory

offset

Operating modes of a processor

Real mode

Software has an unlimited direct access to all addressable

memory, I/O addresses and peripheral hardware. Real mode

provides no support for memory protection, multitasking, or

code privilege levels.

Advantages of the segmentation

• shorter addressing part of the instruction (only the

offset of the operand is encoded in the instruction,

the base address is in a pre-described register)

• instructions are separated from data

Segment types

• code segment – holds machine instructions

• data segment

• stack segment – holds:

• return addresses, parameters and local variables

of procedures,

• temporary results of mathematical operations

Linear address is a combination of base address and offset.

Base address: 16 bits long

Offset: 16 bits => maximum size of a segment is 216 bytes = 64

kB.

Linear address = base address * 16 + offset

base address

0 15

0000

offset

0 15

linear address

0 19

+

Linear address calculation

Linear address Physical address =

Protected mode (32-bit processor)

• Allows regions of memory to be mapped to different

locations in the physical address space.

• In addition, the memory access rights can be

controlled, much as they can for segments (paging

enables multitasking – concurrent execution of

multiple processes).

Paging – another memory management scheme.

Base address: 32 bits, offset: 16/32 bits

Linear address = base address + offset

Linear address
paging

Physical address

Virtual mode (32-bit processor)

• Processor runs in protected mode, but simulates real mode:

a 20-bit linear address is translated by paging to a 32-bit

physical address.

• A processor is switched to virtual mode when running a MS-

DOS application under 32-bit Windows operating system.

Long mode (64-bit processor)

• Operating system and applications can access 64-bit

registers.

• Applications written in protected mode can run in sub-

mode compatibility mode.

• 16-bit applications cannot run (DOS emulator like DOSBox

is needed).

Mode

Operating

system

required

Type of code

being run

Linear

address

[b]

General

purpose

registers [b]

Long

mode

64-bit mode

64-bit

64-bit code 64 64

Compatibility

mode

32/16-bit

protected

mode

32 32

Legacy

mode

Protected

mode
32-bit

32/16-bit

protected

mode

32 32

Virtual 8086

mode
32-bit

16-bit real

mode
20 32

Real mode

16-bit

(starting mode

for 16-, 32-

and 64-bit OS)

16-bit real

mode

20 16

Put it all together...

Comment

16-bit code: uses 16-bit general purpose registers and x86

instruction set

32-bit code: uses 32-bit general purpose registers and IA-32

instruction set

64-bit code: uses 64-bit general purpose registers and x86-

64 instruction set

Registers

• user registers – used by user applications

• system registers – used by the operating system to control

the CPU

– memory locations inside the processor.

User registers:

• general-purpose registers

• segment registers

• instruction pointer

• flags register

General-purpose registers

31 16 15 8 7 0

EAX AX

EBX BX

ECX CX

EDX DX

ESI SI

EDI DI

EBP BP

ESP SP

AH AL

BH BL

CH CL

DH DL

• hold instruction operands

• contain the address (offset) of an operand or participate

in its calculation

Stack

Pointer

Segment registers

15 0

CS code segment

DS data segment

SS stack segment

ES

FS extra segment

GS

• In real mode they contain the base address of a

segment.

• In protected mode they contain indexes (selectors) to

a table where segment descriptors are stored; they

are initialized automatically by the operating system.

Instruction Pointer - EIP

• 32-bit register

• EIP points to the next instruction that is to be fetched

from memory.

• EIP is initialized automatically by the operating system at

the moment of the program start to the offset of the first

instruction.

• As one instruction is fetched from memory to the CPU, EIP

is advanced to point to the next instruction. Jumps,

procedure calls and returns change the EIP value as well.

• A programmer cannot set it directly.

Microsoft Visual Studio, Disassembly window:

 mov edx, offset myMessage
 004033F5 mov edx,406000h

Microsoft Visual Studio, Registers window:

 EIP = 004033F5

Flags register

• 32-bit register

• It contains information on

• the result of the recent arithmetic or logical operation

• the state of the processor

• the state of the current task

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

0 0 0 0 0 0 0 0 0 0 RF

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 OF DF IF TF SF ZF 0 AC 0 PF 1 CF

used by the operating system

CF (Carry Flag)

CF is set to 1 if the result of an arithmetic operation on

unsigned numbers is too big to be held in the specified

register or memory location, i.e. the operation has

produced a carry from the most significant bit.

Otherwise it is set to 0.

mov al,0FFh; store 0FFh to register al
add al,4; add 4 to al

 1111 1111 (= FFh)

 100 (= 4h)

(1)0000 0011 (= 103h <0;FFh>)

CF = 1

mov al,127
add al,4

 0111 1111 (= 127)

 100 (= 4)

 1000 0011 (= 131 <0;255>)

CF = 0

OF is set if a carry to the most significant bit does not equal

to the carry from the most significant bit.

mov al,-1
add al,4

OF (Overflow Flag)

a) the operation has produced a carry to the most significant

(sign) bit but not from the most significant bit,

b) or the operation has produced a carry only from the most

significant bit.

 1111 1111 (= -1)

 100 (= 4)

(1)0000 0011 (= 3 <-128;127>)

OF = 0

It is checked after an operation on signed numbers. OF is set

to 1 if an arithmetic operation gives a result which is out of

range, i.e.

mov al,127
add al,4

 0111 1111 (= 127)

 100 (= 4)

 1000 0011 (= 131 <-128;127>)

OF = 1

SF (Sign Flag)

– is only useful when operating with signed numbers.

SF is set to 1 if the result of an operation is negative,

otherwise it is set to 0.

SF takes the same value as the most significant bit of the

result.

mov al,-1
add al,4

1111 1111 (= -1)

 100 (= 4)

0000 0011 (= 3)

SF = 0

mov al,-1
add al,-4

1111 1111 (= -1)

1111 1100 (= -4)

1111 1011 (= -5)

SF = 1

AC (Auxiliary Carry flag)

mov al,28h
add al,9

0010 1000 (= 28 BCD)

0000 1001 (= 09 BCD)

0011 0001 (= 31?)

- is useful when operating with decimal numbers

represented in packed BCD form.

AC is set to 1 if an arithmetic operation has produced a

carry from the 3rd to the 4th bit.

AC = 1

ZF (Zero Flag)

ZF is set to 1 if the result of an operation is zero, otherwise it

is set to 0.

mov al,-1
add al,4

1111 1111 (= -1)

 100 (= 4)

0000 0011 (= 3)

ZF = 0

mov al,-1
add al,1

1111 1111 (= -1)

 1 (= 1)

0000 0000

ZF = 1

 Calculate 83 + 51 in the binary numbering system (1010011

+ 110011). What will be in flags CF, OF, SF, ZF a AC?

Parity Flag PF (Parity Even)

PF is set to 1 if the lowest byte of the result of an operation

contains an even number of 1s, otherwise it is set to 0. It is

mainly useful when transmitting data between devices.

DF (Direction Flag)

DF is useful when manipulating a data array (string, vector

etc.). It is set by instructions in a program.

If DF is set to 0, the string instruction increments the index

by the size of the array entry and so progress is forward

through memory (the string is manipulated from the left to

the right).

If DF is set to 1, the string instruction decrements the index

and so progress is backward through memory (the string is

manipulated from the end to the beginning).

IF (Interrupt Enable Flag)

IF is set by instructions in a program.

If IF is set to 1, interruption to normal processor operation

can be initiated from I/O devices (like keyboard, mouse, disc,

modem).

If IF is set to 0, external interrupts are ignored.

IF is automatically set to 0 at the entry to the interrupt

service routine and its original value is restored at the exit.

TF (Trap Flag)

RF (Resume Flag)

These flags are useful when debugging programs.

They are set by instructions in a program (debugger).

By setting TF to 1 the processor is forced to operate in single

step mode in which an internal interrupt is generated after

every instruction.

By setting RF to 1, a potential breakpoint on the next

instruction will be ignored.

Debugger sets RF to 1 after the breakpoint service routine

has finished so the program can continue from the instruction

labeled by breakpoint. After the instruction has been

executed, RF is set to 0.

