
Assembly Language Programming 
Ľudmila Jánošíková  
 

Department of Mathematical Methods and Operations Research 

Faculty of Management Science and Informatics 

University of Žilina 

tel.: +421 41 513 4200 

Ludmila.Janosikova@fri.uniza.sk 

http://frdsa.fri.uniza.sk/~janosik/ 



Recommended texts 

• Hyde, R.: The Art of Assembly Language Programming 

http://www.plantation-

productions.com/Webster/www.artofasm.com/Windows/

HTML/AoATOC.html 

• Irvine, K.R.: Assembly Language for x86 Processors.  

7th edition. Pearson, 2017. 

http://www.plantation-productions.com/Webster/www.artofasm.com/Windows/HTML/AoATOC.html
http://www.plantation-productions.com/Webster/www.artofasm.com/Windows/HTML/AoATOC.html
http://www.plantation-productions.com/Webster/www.artofasm.com/Windows/HTML/AoATOC.html
http://www.plantation-productions.com/Webster/www.artofasm.com/Windows/HTML/AoATOC.html




• low level programming language (like machine code) 
 
Machine code: C6052960400000 

What is assembly language? 

C605 

operation code (opcode) – 

what to do 

2960400000 

operands – 

data to be processed 



Machine code: C605 

store a number to 

a memory location 

29604000 

address 

00 

number 

Assembly language instruction: mov Value,0 

C6052960400000 mov Value,0 
translation 1:1 

(assembler) 

Every processor has its own instruction set,  

thus its own machine code,  

thus its own assembly language. 



Advantages of the assembly language 

• The program written in the assembly language runs faster 

than the corresponding program written in a high level 

language  

• and occupies less memory. 

• You can exploit all capabilities of the processor (all 

operations the processor can perform). 

• Knowledge of the assembly language enables you to 

understand, how a computer works, and to write better 

programs in a high level language. 



When to use the assembly language? 

• when you have not got another compiler 

• when your program is supposed to run fast 

• for programming a part of an operating system (e.g. a 

driver of an input or output device) 

• for real-time computing when a control computer must 

response the event „immediately“ 

• for debugging a program written in a high level language 



• The program is hardware dependent (your program will 

not run on a different processor). 

• You have to know the details on hardware and addressing 

modes. 

• The source code is long and readable with difficulty. 

 Example:  

Add two integer variables  i a j and store the result into 

variable k. 

Java:  k = i + j; 

Disadvantages of the assembly language 

Assembly language: mov eax,i  

    add eax,j  
   mov k,eax  

 mov ecx,k  

Optimized assembly 

language code? 

for (int p = 0; p < k; p++) 



Goal of the course  

To learn how to  

think  

in assembly language. 



Architecture (of a computer or processor) – 

organization of basic components with regard to 

their interconnection and operations. 



Bus architecture of a computer  

Processor 

(CPU) 
Memory 

Input/ 

Output 

Bus 

D 

A 

C 

• Address bus: unidirectional; group of wires which carries 

address information bits from processor to memory and 

peripherals (16, 20, 24 or more parallel signal lines) 

• Data bus: bidirectional; group of wires which carries data 

from processor to memory and peripherals and vice–versa 

• Control bus: bidirectional; group of wires which carries 

control signals from processor to memory and peripherals 

and vice–versa 



Architecture Intel Skylake 
 launched in August 2015 

 Skylake is the last commercial step „tock“ in Intel’s “tick-tock” 

design model:  

 „tick“ – improvement of manufacturing process technology 

(higher density of transistors on a chip)  

 „tock“ – better architecture with the aim to improve 

performance, reduce power consumption, and to bring new 

functions 

 for desktops, servers and mobile devices 

tock 

22 nm 

tick 2012 

arch. Haswell 

tock 

32 nm 

tick 2010 

Sandy Bridge 

tick 2014 

14 nm 

tock 

arch. Skylake 



Architecture Intel Kaby Lake 

 announced in August 2016 

 Kaby Lake is produced using the same 14 nanometer 

manufacturing process technology as Skylake 

 with Kaby Lake Intel broke “tick-tock” design model 

(technology – architecture) and turned to a new model 

technology – architecture – optimization. 

tak 

22 nm 

tik 2012 

arch. Haswell 

tik 2014 

14 nm 

tak 

Skylake Kaby Lake 

10 nm 



Structure of a quad-core processor 

System Agent 

Core 

L3 cache 

(6 - 8 MB) 

Core 

Core 

Core 

GPU (Graphics 

Processing Unit) 

System Agent contains: 

• memory controller – manages the 

flow of data going to and from the 

computer's main memory; 

• bus interface; 

• Image Processing Unit (only for 

mobile devices) – supports video 

and graphics processing functions 

(e.g. rotation, vertical/horizontal 

inversion) => access to main 

memory is minimized. 

GPU 

• hardware support for graphical 

operations 



Back-end 

 

 

 

 

 

 

    

Front-end 

L2 Cache 

(256 KB) 

L1 Instruction Cache 

(32 KB) 

Pre-decode 

Instruction Queue 

5 decoders 
 Allocation Queue 

(128 ops) 
Out-of-Order Unit 

Execution Units 

L1 Data Cache 

(32 KB) 

Individual core 

Branch  

Prediction 

 L0 μop Cache  

(1536 ops) 

Instruction Fetch Unit 



• cache memory 

• pipelining 

• dynamic execution 

• SIMD technology (Single Instruction Multiple Data) 

Important features of modern processors 

Goal:  

Faster execution through parallelism. 



Cache memory 

• CPU cache is used to reduce the access time to data and 

instructions in memory. The cache is a smaller, faster 

memory which stores copies of the data from main memory 

locations.  

• Instructions in your program cannot address it; the 

hardware decides on its contents. 

• Motivation: in a short time period the program repeatedly 

accesses the same or adjacent memory locations  

 



Temporal locality of reference 

• In a short time period (e.g. during a loop) the program 

repeatedly accesses the same memory locations. 

Spatial locality of reference 

• The program frequently accesses adjacent memory locations. 

for (int i = 0; i < 10; i++) A[i] = 0; 

Temporal locality: variable i; bytes containing the coded 

instructions of the loop 

Spatial locality: adjacent entries of array A; bytes containing 

the coded instructions of the loop 

That is why a block of data rather than a single variable or 

instruction is fetched from the main memory to the cache. 



Write policy from the data cache to the higher level memory 

• Write-through – data are written to the cache and at the 

same time to the higher level memory. 

• Write-back – more efficient; the cache control unit tracks, 

whether data in the cache were changed; if they did, they 

are written to the higher level memory when they are 

released from the cache due to the lack of space. 

Architecture Skylake: 

Write through: data L1  L2  

Write back: L2  L3, L3  main memory 



Pipelining 

• More instructions are executed at the same time. 

Basic computer operation cycle 

1. Instruction Fetch (IF) – a coded instruction is read from 

memory  

2. Instruction Decode (ID) – processor divides the operation 

into basic steps 

3. Data Access (DA) - instruction that needs data from 

memory presents the address to the memory subsystem 

and receives back the data 

4. Execution (EX) 

5. Write Back (WB) – store the results in the proper place 



FB1 

IF 

FB2 

ID 

FB3 

DA 

FB4 

EX 

FB5 

WB 

instr. 1 

1. 

clock 

cycle 

instr. 2 instr. 1 

2. 

clock 

cycle 

instr. 3 instr. 2 instr. 1 

3. 

clock 

cycle 

Every stage is performed in a separate functional block, or is 

decomposed to simpler operations and performed in several 

functional blocks. 

Functional block (FB) – a group of the logic circuits 

performing a common task (e.g. Arithmetic and Logic Unit – 

ALU – arithmetic operations with integers and logical 

operations with bits). 

Pipelining: functional blocks are arranged logically one after 

another and form a pipe: 



Clock cycles 1 2 3 4 5 6 7 8 9 

Instruction 1 IF ID DA EX WB 

Instruction 2 IF ID DA EX WB 

Instruction 3 IF ID DA EX WB 

Instruction 4 IF ID DA EX WB 

Instruction 5 IF ID DA EX WB 

5 instructions are being executed in this cycle. 



Pipeline hazards 

• data dependency – the problem of trying to use data before 

they are available (1st instr. WB, 2nd instr. DA))  

 mov ebx,Address; store address to register ebx  

mov eax,[ebx]; copy the doubleword addressed by 
ebx to register eax  

 



Consequence: bubbles in pipeline 

Clock cycles 1 2 3 4 5 6 7 8 9 

Instruction 1 IF ID DA EX WB 

Instruction 2 IF ID DA EX WB 

Instruction 3 IF ID DA EX WB 

Instruction 4 IF ID DA EX WB 

Instruction 5 IF ID DA EX 



• structural hazards – multiple instructions require the 

same processor resource during a given clock cycle, 

e.g. address bus (3rd cycle) or cache memory (5th cycle) 

=> do calculations with registers rather than variables  

Clock cycles 1 2 3 4 5 6 7 8 9 

Instruction 1 IF ID DA EX WB 

Instruction 2 IF ID DA EX WB 

Instruction 3 IF ID DA EX WB 

Instruction 4 IF ID DA EX WB 

Instruction 5 IF ID DA EX WB 



• control hazards – they are caused by 

branch instructions that contain a logic 

condition which must be evaluated first  

to decide if the branch should be taken 

or not. If the pipeline contains 

instructions from the wrong branch, they 

need to be killed. 

5. clock FB1 

IF 

FB2 

ID 

FB3 

DA 

FB4 

EX 

FB5 

WB 

instr. 5 instr. 4 instr. 3 instr. 2 instr. 1 

cmp k,0  
je Finish 
mov eax,i  
add eax,j  
mov k,eax 
... 
Finish:  
 

Instruction je in step WB modifies instruction pointer (points 

to the next instruction that is to be fetched from memory), so 

the subsequent instructions in pipeline have to be cancelled. 



Branch prediction 

• unconditional – like “goto”. 

 Unconditional jumps have no specific condition (they do 

not depend on the result of the previous operation). 

Immediately after decoding the processor knows where the 

program execution will continue and it can start fetching 

instructions from the new address that is an operand of the 

jump instruction. 

• conditional – if, case, for, repeat, while. 

 A conditional jump contains a logic condition that must be 

evaluated first. If the condition is met, the branch is taken 

and the execution continues at the target location. 

Jumps (15 to 25 % of instructions): 



• if the conditional jump will be taken or not;  

• the target address. 

The goal of branch prediction is to predict: 

• dynamic – used for jumps that have already occurred in 

the program (e.g. a jump at the end of the loop)  

• static – if the jump instruction has not executed yet  

Prediction: 



Two-level dynamic prediction 

From the behaviour of the jump instruction in the past the 

processor predicts its behaviour in the future. 

mov eax,i  

add eax,j  
mov k,eax  
cmp k,0 
je Finish 
 

 

BHT 

Branch History Table (BHT) stores the history 

of several hundreds of latest jumps (whether 

the branch was recently taken or not). 

BHT is indexed by the low-order address bits of 

the jump instruction. 



address of the jump instruction 

BHT 

2k entries 

k bits 



0 

3 

1 

2 

+ 

+ 

+ 

+ 

- 

- 

- 

- 

counter BHT entry 

Prediction: 

 in state 0 a 1: will not be taken 

 in state 2 a 3: will be taken 

jump was taken 

jump was not taken 

... 

2. level: 16 2-bit counters 

15 1 0 

1. level: 4-bit shift register 

0 0 1 0 



When the jump is taken for the first time, the target 

address is added to the list of target addresses 

(Branch Target Buffer – BTB).  

If the prediction is „the branch will be taken“, then 

the target address is retrieved from BTB and the 

instruction need not be decoded again. 



Static prediction 

– is used if the jump has not occurred yet (it has no BHT 

entry). 

Static prediction is based on the statistical analysis of 

behaviour of typical branching instructions like the loop 

instruction. The loop will more probably continue (through 

a jump to its beginning if the termination condition is at the 

end of the loop) than terminate. That is why backward 

branches are predicted to be taken, while forward branches 

are predicted to be not taken. 



If the termination condition is at the end of the loop, backward 

jump to the beginning repeats the loop.  

    mov edi,0; edi points to the first character of the string 
WriteLoop:  
    mov al,[edx+edi]; copy character on the offset edx+edi into 
     register al  
    call WriteChar; display character, whose ASCII code is in al 
    inc edi; increment index by 1 
    cmp edi,n; compare index with variable n 
    jl WriteLoop; if less, jump to WriteLoop 
Finish: 



    mov edi,0; edi points to the first character of the string 
WriteLoop:  
    mov al,[edx+edi]; copy character on the offset edx+edi into 
      register al 
    cmp al,0; compare al with zero 
    je Finish; if equal, jump to Finish 
    call WriteChar; display character, whose ASCII code is in al 
    inc edi; increment index by 1 
    jmp WriteLoop; unconditional jump to the beginning 
Finish: 

If the termination condition is at the beginning of the loop, 

forward jump behind the loop terminates the loop.  



0 

3 

1 

2 

+ 

+ 

+ 

+ 

- 

- 

- 

- 

counter 

jump was taken 

0 0 0 0 0 0 ... 

15 1 0 

1. run: static prediction – branch should be 

taken 

0 0 0 0 

Loop with the termination condition at the end; 

return to the beginning, if the condition is met 



0 

3 

1 

2 

+ 

+ 

+ 

+ 

- 

- 

- 

- 

counter 

jump was taken 

0 0 0 1 0 0 ... 

15 1 0 

2. run:  

0 0 1 0 

Bad prediction! 

Loop with the termination condition at the end; 

return to the beginning, if the condition is met 



0 

3 

1 

2 

+ 

+ 

+ 

+ 

- 

- 

- 

- 

counter 

jump was taken 

0 1 0 1 0 0 ... 

3 1 0 

3. run:  

0 1 1 0 

Bad prediction! 

Loop with the termination condition at the end; 

return to the beginning, if the condition is met 



0 

3 

1 

2 

+ 

+ 

+ 

+ 

- 

- 

- 

- 

counter 

jump was taken 

0 1 0 1 0 0 ... 

7 1 0 

4. run:  

0 1 1 1 

Bad prediction! 

Loop with the termination condition at the end; 

return to the beginning, if the condition is met 



0 

3 

1 

2 

+ 

+ 

+ 

+ 

- 

- 

- 

- 

counter 

jump was taken 

0 1 0 1 0 0 ... 

15 1 0 

5. run:  

1 1 1 1 

Bad prediction! 

Loop with the termination condition at the end; 

return to the beginning, if the condition is met 



0 

3 

1 

2 

+ 

+ 

+ 

+ 

- 

- 

- 

- 

counter 

jump was taken 
1 1 0 1 0 0 ... 

15 1 0 

6. run:  

1 1 1 1 

Bad prediction! 

Loop with the termination condition at the end; 

return to the beginning, if the condition is met 



0 

3 

1 

2 

+ 

+ 

+ 

+ 

- 

- 

- 

- 

counter 

0 1 0 1 0 1 ... 

15 1 0 

7. run:  

1 1 1 1 

Good prediction! 

Loop with the termination condition at the end; 

return to the beginning, if the condition is met 


