
An Acceleration of Exact Algorithms for the

Uncapacitated Facility Location Problem

Jaroslav Janá ek1, ubo Buzna1,2

1Department of Transportation Networks, Faculty of Management Science and Informatics,
University of ilina, Univerzitná 8215/1, SK-010 26 ilina , Slovak Republic
e-mail: jardo@frdsa.uniza.sk, buzna@frdsa.uniza.sk

2Institute of Transport & Economics, Faculty of Traffic and Transport Sciences, Dresden University
of Technology, Andreas-Schubert-Str. 23, D-01062 Dresden, Germany
e-mail buzna@vwi.tu-dresden.de

Abstract

This contribution is focused on an acceleration of branch and bound

algorithms for the uncapacitated facility location problem. Our approach is based
on the well - known Erlenkotters’ procedures and Körkels’ multi - ascent and
multi - adjustment algorithms, which have proved to be the efficient tools for
solving the large - sized instances of the uncapacitated facility location problem.
These two original approaches were examined and a thorough analysis of their
performance revealed how each particular procedure contributes to the
computational time of the whole algorithms. These analyses helped us to focus
our effort on the most frequent procedures. The unique contribution of this paper
is a new dual ascent procedure. This procedure leads to considerable acceleration
of the lower bound computation process and reduces the resulting computational
time. To demonstrate more efficient performance of amended algorithms we
present the results of extensive numerical experiments.

Keywords: branch and bound, uncapacitated facility location problem, dual

ascent algorithm, DualLoc, PDLoc

1 Introduction

Location science is a well-established field in applied mathematics and in

operation research. Classification and broad overview of location problems and
solution techniques can be found, for example, in Hale and Moberg (2003),
Brandeau and Chiu (1989), Owen and Daskin (1998), Klose and Drexl (2005)
and Labbé and Louveaux (1997). Location science comprises the vast amount of
problem specifications and their variations. One of the basic but important
problems is the uncapacitated facility location problem (UFLP) introduced in
Balinski (1965). The uncapacitated facility location problem belongs to the most
popular topics of theoretical research and computational analysis in the last four
decades (Galvão (2004)). Its attractiveness originates from several characteristics
of the problem. Although the problem is known to be NP-hard (Cornuejols et al.
(1990)), there was soon found an effective exact algorithm, which enables to
solve large-sized instances of the problem. This property is very rare in the
family of integer programming problems.

The other fact, which contributes to the attractiveness of this problem, is its
broad applicability (Janá ek (2004)). The solving technique can be used not only
for a design of the cost optimal structure of two-echelon distribution system, but
it can be also embedded into various algorithms, which were designed to solve
more complex location problems. As reported in (Galvão (2004)), it is possible

to reformulate the classical maximum distance problem, p – median problem,

and the maximum covering location problem into a form of the UFLP.
Furthermore, the algorithm for the UFLP can be employed in an approximate
solving of the p – centre problem. These circumstances motivated us to focus our

research on improving the current exact solving techniques for UFLP.
The UFLP consists of placing facilities such as warehouses, offices or

hospitals in some sites of a given finite set I and in a consecutive unique
assignment of customers from a given finite set J to the located facilities. The
term “customer” can denote a real customer, but it can also stand for an
inhabitant of some region, a patient in a hospital, or a retailer and so on. The
possible operations, i.e. the facility location and the customer assignment, should
minimize the value of a cost objective function. This objective function includes
both the fixed charges fi paid for facility location at the location i and the costs cij
for demand satisfaction of the j-th customer from the location i.

Defining the variables yi {0,1} for i I (where yi = 1 means placing a new
facility at location i) and the variables zij {0,1} for i I and j J (where zij = 1

represents the assignment of location i to customer j) we get the following model
of the UFLP:

Minimize zP=
i I

 fi yi +
Ii j J

 cij zij (1)

Subject to
i I

zij = 1 for j J (2)

 zij yi for i I and j J (3)
 yi, zij {0, 1} for i I and j J. (4)

Many authors have dealt with this problem (Körkel (1989), Conn and

Cornuéjols (1990) and Goldengorin et al. (2004)). Nevertheless, the now seminal
procedure, DualLoc, proposed by Erlenkotter (1978) remains one of the most
effective algorithms, and enables solutions in tractable times (Crainic (2002)).
Inspired by this approach, the exact algorithms PDLoc (Körkel (1989)) and
BBDual (Janá ek and Kova iková (1997)) were implemented and tested. These
algorithms exploit the relation between the primary and dual formulation of the
strong linear programming relaxation of the original problem. And when needed,
the procedures, calculating the dual and induced primary solution, are followed
by branch and bound method. The duality gap was analytically studied by
Mladenovi et al. (2006). Conn and Cornuéjols (1990) proposed an orthogonal
projection method to solve the dual problem to optimality. The Boolean
representation of the UFLP allows to construct the rules for reduction of the
UFLP instances, and either to solve or reduce the size of solved subproblems
(Mladenovi et al. (2006), Körkel (1989), Goldengorin et al. (2004)). Such rules
were tested in Goldengorin et al. (2004), showing the significant reduction of the
computational time. The data correcting method (Goldengorin et al. (2003))
allows to determine the exact and approximate solutions of the UFLP. This
method is applicable to broad spectrum of problems with super modular
objective function and performs very well also for UFLP, when combined with
elements of the Erlenkotter’s approach.

The combinatorial background of the UFLP enables simple, but a very
efficient application of modern heuristics. Alves and Almeida (1992)
successfully used the simulated annealing method. A genetic algorithm was
employed in Kratica et al., (2001) and tabu search strategies were used to solve

UFLP in Michel and Hentenrych (2001) and in Sultan and Fawzan (1999). In

Ghosh (2003) is compared the performance of several steepest descent local

search heuristics using various neighbourhood structures. Choosing the best

performing structure the tabu search strategy and the complete local search

strategy were implemented. In summary, Ghosh concluded a very good

performance of studied algorithms on UFLP of smaller and medium sizes (up to

750 customers and 750 facility locations). The hybrid and multi-start heuristic,

combining the characteristics of several metaheuristics, was applied in Resende

and Werneck (2006) giving very good results for large set of numerical

experiments.

The remainder of our paper is organized as follows. In Section 2, we briefly

introduce the existing exact solving methods PDLoc and BBDual. Section 3

presents the results of preliminary experiments, which identify the critical points

of both algorithms. The suggested improvements are then described in Section 4.

The benefits of our rearrangements are reported in Section 5. To conclude this

paper, in Section 6, we summarize our findings and suggest some possible

directions of further research.

2 Dual based lower bounding in branch and bound methods for

UFLP

The basic idea, which was originally introduced in the algorithm DualLoc and
which was also followed by the algorithms BBDual and PDLoc, consists in
relation between linear relaxation of the original problem (1) – (4) and the
associated dual problem.

After some reformulation and introduction of slack variables si, the dual
problem (see Körkel (1989)) takes the following form:

Maximize zD =

Jj

vj (5)

Subject to

Jj

max {0, vj - cij}+ si = fi for i I (6)

 si 0 for i I (7)

Objective function value zD of any feasible solution is smaller or equal to any

objective function value zP of any feasible solution of the linear relaxation of
(1) - (4), according to the weak duality theorem. Thus, objective function value
of arbitrary feasible solution of (6) - (7) constitutes a lower bound for optimal
solution of the problem (1) - (4).

To obtain a good lower bound from the dual problem, Erlenkotter (1978)
suggested combination of two procedures. The first of them, the dual ascent
algorithm (DA), introduced by Bilde and Krarup (1977), starts from an arbitrary
feasible solution of the dual problem and subsequently increases the values of
the vj variables as long as constraints (6) and (7) hold.

The second procedure enables a further improvement of the dual solution
obtained by the DA procedure. The dual adjustment procedure (DAD) searches
for a configuration, in which a decrease of some variable vj by value will create
free space at least at two locations i and i’ from I, which can be used for an
ascent of at least two different variables vk and vl (k l j). Each found
configuration is exploited and followed by the dual ascent procedure. Having
obtained a dual solution, an induced primal feasible solution can be obtained by
applying the complementary constraints (8) – (10):

(max{0, vj - cij})zij = 0 for i I, j J (8)

siyi = 0 for i I (9)

(yi - zij) max{0, vj- cij}=0 for i I, j J (10)

The original PRIMA procedure ensures the validity of constraints (8) – (9)
and constructs the associated primal solution to the dual solution such that the
constraints (10) are violated as slightly as possible. All these procedures are
described in more detail in Erlenkotter (1978), Körkel (1989) and Janá ek and
Kova iková (1997).

2.1 Algorithm BBDual

If the variables yi are fixed, the optimal values of variables zij can be easily
found. It is sufficient to assign the customer j to the facility i, for which the value
of coefficient cij is minimal. Thus, the most complex problem is to determine the
setting of the variables yi. The BBDual algorithm (see Janá ek and Kova iková
(1997)) is based on the branch and bound method, in which branching is
performed by fixing the variables yi to zeros or ones.

The algorithm makes use of the depth first strategy. To decide if a given
branch should be processed or excluded from the searching process, a lower
bound of high quality is needed. Such lower bound can be obtained by
successively performing the dual ascent and dual adjustment algorithms. These
procedures provide dual feasible solution and the corresponding value of
objective function serves as the searched lower bound. Furthermore, a
corresponding primal feasible solution is generated. This is done by the PRIMA
procedure, which follows the complementary conditions (8) – (10) for both the
primal and the dual problem. The best-found primal solution is stored and its
objective function value constitutes an upper bound of the optimal solution.

2.2 Algorithm PDLoc

The algorithms PDLoc and BBDual are built up on the same principles, which
were introduced in the original algorithm DualLoc. However, the PDLoc
algorithm comprehends a number of effective modifications and improvements
on the original procedures and, in addition, it is enhanced by several new
procedures. Similar to the BBDual algorithm, the PDLoc employs the branch and
bound method to determine the optimal solution, but in contrast to the BBDual,
the strategy of the lowest lower bound is used in the searching tree processing.

Varying the order of customers in the PRIMA procedure, enables to open new
locations each time and to explore a broader spectrum of primal solutions. This
leads to a faster decrease of the upper bound and to the faster termination of
searching process.

In the case where the fixed charges fi are considerably higher than the
allocation costs cij, the first dual solution is calculated by the dual multi-ascent
procedure (MDA) instead of the dual ascent procedure. In the dual multi-ascent
procedure, the variables vj are initially set to some high value and then they are
adjusted to meet constraints (7). Executing the original dual ascent procedure
completes this process. This rearrangement gives a considerable time saving as
shown in the next sections.

Other improvement consists of applying the simple exchange heuristic after
the first primal solution is found. Moreover, when a big difference between the
upper and lower bound occurs, it is reduced by the modified dual adjustment
procedure. This procedure consists of two phases. The first of them is called the
primal-dual multi adjustment (PDMAdj) and the second is the primal-dual
adjustment (PDAdj). In the first phase, the values of variables vj are extensively
reduced and subsequently gradually incremented using a modified dual ascent
algorithm. In the second phase, the values of variables vj are reduced in the loop,
variable by variable, and then the resulting dual solution is processed by the dual
ascent algorithm. The number of repetitions of the dual adjustment procedure
depends on the problem size.

The used branch and bound searching scheme allows to fix the selected
locations to be permanently opened (yi = 1) or closed (yi = 0) and thereby to
reduce the size of the solved problem. To fix a variable, special conditions have
to be satisfied. Evaluation of these conditions is time consuming, especially
being deep in the searching three. Therefore the fixing of variables is preferred in
the root of the searching tree (pre-processing). If a processed branch is deep in
the searching tree, the variables are fixed only if there is a possibility to fix
several variables simultaneously. For more detailed explanations we refer the
reader to the original work Körkel (1989).

3 Experimental evaluation of algorithms BBDual and PDLoc

We implemented both algorithms using the integrated development
environment Delphi. In our implementation we restricted the values of the
coefficients fi and cij to integers.

Following our main goal to improve the computational properties of both
algorithms, we started with a broad set of numerical experiments, testing the
algorithms BBDual and PDLoc on a set of problems generated from the real-
world transportation networks. The experiments were not focused only on
revealing the computational properties of the whole algorithms, but we studied
also the computational complexity of particular procedures. It enabled us to
compare their importance and mutual interactions. Special attention was paid to
the dependence of computational time on the size of the problem and on the ratio
between the coefficients fi and cij.

3.1 Benchmarks

Three sets of testing problems were used to perform the above-mentioned
numerical experiments. The first set is formed by the well-known Beasley’s
testing problems (Beasley (1990)) cap41, …, cap134, the sizes of which
(I J) vary from 16 50 to 50 50 including three testing problems capa, capb
and capc of size 100 1000. The values of coefficients in objective function were
rounded to integers.

Since the standard Beasley’s testing problems are relatively small we have
generated two other sets, named K90 and G700. The set K90 consists of 90
testing problems derived from the railway network of Slovak Republic. These
medium sized problems are ordered in ten groups: 45 457, 91 457, 137 457,
182 457, 229 457, 274 457, 319 457, 365 457, 411 457 and 457 457. The
set G700 consists of 700 problems derived from the road network of Slovak
Republic. This set consists from ten subgroups, sizes of which ranged from
100 2906, 200 2906, as large as 1000 2906. Each subgroup contained 70
benchmarks. For each size of the benchmark 10 different random subgraphs of
the road network graph of corresponding size were generated. Each subgraph
was used as a base for creating seven benchmarks by modifying the coefficients
cij and fi to cover uniformly the whole spectrum of located facilities in optimal
solution. For instance, for a problem of size 100 2906 the optimal cardinality of
located facilities were 1, 17, 33, 50, 66, 83 and 100 respectively. The source
code of the algorithms and the used benchmarks are available from the authors
upon request.

3.2 Preliminary results of numerical experiments

We solved all problems by both algorithms to obtain the frequency in which
the particular procedures are called. Together with computational time and its
distribution over the procedures, we also evaluated the numbers of visited
branches in the branch and bound method. All numerical experiments mentioned
in this paper were performed on a PC equipped with Intel 2.4 GHz processor,
256 MB RAM and the computational time was measured with preciseness of at
least 60 ms.

The BBDual algorithm solved the Beasley’s problems cap41, …, cap134 in
less than 60 ms. The problems capa, capb and capc needed 0.5, 5.44 and 3.13
seconds, respectively. The PDLoc algorithm solved the problems
cap41, …, cap134 in an average time of 85 ms and the larger problems capa,
capb and capc in 1.91, 47.18 and 107.16 seconds, respectively.

The average computation times for problem sets G700 and K90 are listed in
Table 1 and Table 2, respectively.

Table 1 Average time in seconds and corresponding standard deviation for the
class of benchmarks G700

BBDual PDLoc Size of problems
t [s] stdD t [s] stdD

100x2906 5.343 12.64 1.44 0.93

200x2906 27.16 68.33 1.80 0.99

300x2906 52.95 143.11 2.40 1.48

400x2906 127.06 337.58 2.74 1.82

500x2906 134.17 340.52 5.29 6.52

600x2906 277.59 700.73 5.21 5.54

700x2906 277.70 704.57 6.12 5.45

800x2906 497.26 1248.42 8.56 8.87

900x2906 640.44 1652.65 11.45 11.25

1000x2906 644.88 1595.72 10.60 11.19

Table 2 Average time in seconds and corresponding standard deviation for the class
of benchmarks K90

BBDual PDLoc Size of problems
t [s] stdD t [s] stdD

45x457 0 0 0.13 0.05

91x457 0.05 1.64 0.29 0.24

137x457 0.14 34.6 0.57 0.64

182x457 0.18 31.6 0.56 0.54

229x457 1.11 5037.69 1.70 0.29

274x457 0.87 554.98 0.86 0.54

319x457 1.32 1467.69 1.23 1.05

365x457 1.57 577.08 1.33 0.55

411x457 2.59 5281.33 1.66 1.25

457x457 6.71 8961295.25 6.96 7.05

In addition to the total computational time we also measured the relative time

consumed by each of the particular procedures. The averaged results, obtained
from the experiments with the problem set G700, are shown in Figure 1. The
abbreviations “DA”, “DAD” and “PRIMA” denote the relative average time
consumed by the associated procedures. The “REST” includes the time spent by
branching operations, lower bound computation, as well as necessary memory
operations. The labels “Prima in“ and “DA in“ denote the time spent by
procedures PRIMA and DA, which are called by other procedures (i.e., the time
“DA in” includes the time spent by DA procedure when it has been called from
the DAD procedure). This also explains why the sum over all procedures is
larger than 100 %.

a)

PRIMA in

37.6 % DA in

11.6 %

DA

0.2 %

PRIMA

4.9 %

DAD

51.4 %

PDLoc ext.

32 %

REST

11.5 %

b)

Fig. 1 The average distribution of computational time among the procedures of
BBDual algorithm in (a) and PDLoc algorithm in (b) (these results were obtained for
set G700)

Comparing the results listed in Table 1 and Table 2, it can be found that both

tested algorithms reached almost the same average computational time solving
the problems from the set K90. On the contrary, solving the large problems from
the set G700 the BBDual algorithm was considerably slower. The standard
deviation for the BBDual algorithm is also much higher. This can be explained
by the inefficient performance of BBDual on a specific subset of solved
problems. These problems can be characterized by the considerably higher
values of fi in comparison to the values cij. Such disproportion of coefficients
causes the ineffective performance of algorithm DA in its first run. This delay
did not occur in the PDLoc algorithm, since it was eliminated by the MDA
procedure. The distribution of computation time over the basic procedures DA,
DAD and PRIMA differs considerably. The BBDual algorithm spent in average
72.6% of the computational time by performing the DA procedure, while the
PDLoc algorithm spent on this procedure only 11.8% of the total computational
time.

The total time consumed by the DAD procedure is approximately the same for
both algorithms, but its distribution among the time-consuming activities differs
considerably. In the case of BBDual, the DAD procedure spent 50.1% of the
time performing the DA procedure. In contrary, the PDLoc algorithm needed
only a small part of the time (11.6%) for the DA procedure embedded in DAD
algorithm. This implies that the PDLoc algorithm focuses on a more intensive
searching for improving operations. As a consequence the average number of
inspected branches in the branch and bound method decreases (see Table 3).

Table 3 The average number of inspected branches (PV), the minimal number of
inspected branches (Min PV), the maximal number of inspected branches (Max PV)
and the corresponding standard deviation (Std PV) (these results were obtained for
set G700)

BBDual PDLoc Size of
problems PV Min

PV
Max

PV
Std PV PV Min

PV
Max

PV
Std PV

100 x 2906 6.9 1 59 13.9 1 1 1 0.0
200 x 2906 18.5 1 169 40.6 1 1 1 0.0
300 x 2906 15.1 1 181 37.9 1.1 1 3 0.5
400 x 2906 27.0 1 389 69.7 1.1 1 3 0.5

500 x 2906 22.9 1 337 56.1 1.6 1 7 1.3
600 x 2906 37.3 1 429 94.5 1.5 1 7 1.3
700 x 2906 34.8 1 461 79.2 1.5 1 5 1.0

800 x 2906 58.9 1 470 119.7 2.2 1 9 2.1
900 x 2906 58.9 1 630 133.4 2.3 1 11 2.2
1000 x 2906 48.9 1 693 113.6 1.7 1 11 1.7

The performed analysis indicated the benefits of the MDA procedure, and also

gave us a notion about the time consumed by particular procedures and allowed
us to identify the most critical parts of the both algorithms. Moreover, the
analysis helped us to estimate, how the intensity of searching for new
improvements in the DAD procedure influences the number of visited branches
in the branch and bound method.

4 Rearrangements of the algorithms BBDual and PDLoc

The preliminary experiments and the subsequent analysis of results showed
that the DA procedure is the greatest time consumer as concerns the BBDual
algorithm. The next finding, which follows from the analysis, is that the MDA
procedure considerably improves the computational process when the algorithm
PDLoc is used. Taking into account these two observations, we have focused our
efforts on an improvement of the DA procedure and on an overall rearrangement
of the BBDual algorithm utilizing the MDA procedure.

4.1 New scheme of the DA procedure

The original DA procedure (see Figure 2) processes the set of relevant
customers J+, customer by customer, in an order, which follows an input
sequence of the relevant customers. At each step, the variable vj corresponding to
the customer j J+, is incremented by a value d. The value d is determined as a
maximal value, which satisfies the constraints (6). Hence, it is obvious, that this
variable cannot be increased in the further steps, and thus the customer j can be
excluded from the set J+. This procedure is repeated until J+ is empty.

121 jij cv

j1

j2

j3

111 jij cv

313 jij cv

222 jij cv

1i
s

2i
s i2

i1

Fig. 3 The setting of

parameters showing the

situation, when the ordering

of customers improves the

efficiency of DA procedure

Procedure DA (J+)
While |J+| > 0, do :
 Get next j J+.
 Set d1 = mini si with i {i: cij vj}.
 Set d2 = mini (cij - vj) with i {i: cij > vj}.

If d1 > d2, set d = d2. Else, delete j from J+ and set d = d1.
If d > 0, then:

 For each i {i: cij vj}, set si = si – d.
 Set vj = vj + d and zD = zD + d.
Terminate.

Fig. 2 The original DA procedure as it was introduced by Körkel (1989)

In the following, we will show that the performance of this procedure

significantly depends on the order in which the set of relevant customers is
processed. This drawback is explained on the example with two possible
locations i1, i2 and three customers j1, j2 and j3, depicted in Figure 3. Let us
associate two slack variables

1i
s and

2i
s with the locations i1 and i2. An edge

connecting a customer j to a location i denotes that the inequality vj cij holds for
this pair of subscripts. Denoting by symbol Kj the cardinality of set {i I: cij vj}
for a customer j, we get =

1j
K 2, =

2j
K 1 and =

3j
K 1.

The DA procedure processes the customers in the order, which is given by the
sequence in which they entered the procedure (i.e. first to be processed is the
customer j1 followed by customers j2 and j3). If
the processing of customer j1 enables an increase
of the variable

1j
v by value , then the lower

bound increases exactly by . The maximal
theoretical increase of the lower bound is given
by the sum of

1i
s and

2i
s . In the example

depicted in Figure 3, the increment has to be
subtracted from the both slack variables

1i
s and

2i
s , and it has to meet constraints (6). It means

that the theoretical capacity
1i

s +
2i

s is reduced

by 2 in order to increase the lower bound by .
Taking into consideration the theoretical

capacity and its possible decrease by modifying
the variables vj we formulate a new DA*
procedure, which exploits the potential for the
increasing of the lower bound in a more efficient way. Our approach is based on
prioritising the customers, which selection promises a larger increase of the
lower bound zD (5) in the next steps. We will order ascendingly the relevant
customers J+ according to cardinalities of Kj. The benefit of this scheme can be
demonstrated on the example depicted in Figure 3.

Having applied the designed prioritisation rule, the customers are processed in
the order j2, j3 and j1. If processing of the customer j2 enables an increase of the
variable

2j
v by , then considering constraints (6) only the slack variable s2 has

to be reduced by . In this way, the theoretical capacity is reduced by value
and the lower bound, accordingly, increases by . As demonstrated, this
approach may reduce the sum of slack variables si less than the original DA
procedure does, keeping the same increase of variables

2j
v .

Procedure DA* (J+)
Order the set J+ of relevant customers into a sequence j1, j2,... jk,...jn
ascendingly with respect to the cardinalities Kj.
For k = 1 to |J+| do:

Set j:=jk.
Set d=min{min{si:i I, cij vj },{cij-vj :i I, cij > vj }}.
If d > 0, then:

Update si for i I, cij vj by si:=si-d. Set vj:=vj+d and zD = zD + d.
If the cardinality Kj has increased, then reorder the sequence of
customers jk, ..., jn.

Terminate.

Fig. 4 New DA* procedure

4.2 Further rearrangement of the algorithms

Based on the above-mentioned analysis and the preliminary experiments we
implemented and verified the following rearrangements:

• We applied the DA* procedure in the both algorithms.
• We embedded the MDA procedure into the BBDual algorithm to

improve its efficiency in the cases, when the ratio of fixed charges fi
and costs cij is large.

• We amended the evaluation of branches in BBDual algorithm. Both
newborn branches are evaluated simultaneously and the more
perspective branch is processed first.

In this way, we formed new versions of the original algorithms BBDual and
PDLoc. To distinguish the original and the new versions of algorithms, the
modified algorithms are denoted as BBDual* and PDLoc*. It should be noted
that all the above-described modifications were studied also separately. None of
them brought larger improvements in the computational time as when used
individually.

5 Results of numerical experiments

The effects of suggested rearrangements were extensively examined by
numerical experiments performed on three sets of testing problems, described in

Section 3.1. Similarly to Section 3.2, we evaluated the computational time and
its distribution among the particular procedures together with the number of
inspected branches.

Figure 5 gives an evidence of a significant time reduction, when the DA*
procedure is used. The total usage was reduced from 72.6 % to 9% in the
BBDual* algorithm as well as from 11.8% to 1.4 % in the PDLoc* algorithm. This
result suggests that our new DA* procedure has a significant influence on the
performance of the both algorithms.

a)

b)

Fig. 5 The average distribution of computational time among the procedures of BBDual*

algorithm in (a) and PDLoc* algorithm in (b) (these results were obtained for set G700)

The BBDual* algorithm solved Beasley’s testing problems cap41, …, cap134
in less than 60 ms. The problems capa, capb and capc were solved in 0.33, 1.32
and 1.87 seconds, respectively. The PDLoc* algorithm solved problems
cap41, …, cap134 in an average time of 13 ms and the larger problems capa,
capb and capc in 0.55, 0.55, and 19.77 seconds, respectively.

Comparison of these results with the performance of the original algorithms
reported in Section 3.2, indicates that the proposed modifications brought
considerable time savings.

In Table 4, we report the average computational time and the standard
deviation in which the BBDual* and PDLoc* algorithms solved the testing
problems G700. To facilitate the comparison with the original algorithms, Table
4 and Table 5 list the computational time of the original algorithms in the
columns labelled BBDual and PDLoc.

Table 4 Average time in seconds and corresponding standard deviation
for benchmarks G700

BBDual BBDual* PDLoc PDLoc*
 Size of problems

t [s] t [s] StdD t [s] t [s] StdD

100x2906 5.343 0.28 0.29 1.44 0.77 0.34

200x2906 27.16 0.41 0.39 1.80 0.87 0.22

300x2906 52.95 0.74 0.64 2.40 1.20 0.90

400x2906 127.06 1.01 0.47 2.74 1.46 0.88

500x2906 134.17 1.75 1.05 5.29 2.83 0.90

600x2906 277.59 2.54 1.78 5.21 3.64 2.88

700x2906 277.70 3.90 2.77 6.12 4.63 4.38

800x2906 497.26 5.07 4.23 8.56 6.45 6.35

900x2906 640.44 7.24 6.31 11.45 8.89 8.83

1000x2906 644.88 7.07 5.89 10.60 7.47 8.08

Presented results show that our modifications led to considerable decrease of

the overall computational time. We should note that the using of MDA procedure
in algorithm BBDual also contributed to this significant reduction. A similar
reduction of computational time was also observed, when the benchmarks K90
were processed (see Table 5).

Table 5 Average time in seconds and corresponding standard deviation
for benchmarks K90

BBDual BBDual* PDLoc PDLoc*
 Size of problems

t [s] t [s] StdD t [s] t [s] StdD

45x457 0 0.01 0.02 0.13 0.09 0.02

91x457 0.05 0.02 0.03 0.29 0.13 0.04

137x457 0.14 0.08 0.13 0.57 0.29 0.31

182x457 0.18 0.12 0.12 0.56 0.30 0.22

229x457 1.11 0.62 0.90 1.70 0.80 1.27

274x457 0.87 0.44 0.37 0.86 0.43 0.27

319x457 1.32 1.13 1.41 1.23 0.97 0.76

365x457 1.57 8.53 20.75 1.33 0.97 0.47

411x457 2.59 14.54 31.02 1.66 1.14 0.98

457x457 6.71 7.60 10.80 6.96 4.78 6.92

Table 6 reports on the average number of inspected branches, the minimal and

maximal numbers of inspected branches and the standard deviation for the
numbers of inspected branches. These outputs together with the computational
time give evidence of the remarkable acceleration of the both algorithms.

Table 6 The average number of inspected branches (PV), the minimal number of the
inspected branches (Min PV), the maximal number of inspected branches (Max PV)
and the corresponding standard deviations (Std PV) (these results were obtained for
set G700)

BBDual* PDLoc* Size of
problems PV Min

PV
Max

PV
Std PV PV Min

PV
Max

PV
Std PV

100 x 2906 1.4 1 5 0.9 1 1 1 0
200 x 2906 1.2 1 3 0.6 1 1 1 0

300 x 2906 1.8 1 7 1.5 1.2 1 5 0.7
400 x 2906 1.5 1 7 1.2 1.0 1 3 0.2
500 x 2906 2.7 1 11 2.4 1.5 1 7 1.2

600 x 2906 3.1 1 17 3.4 1.3 1 5 0.8
700 x 2906 4.9 1 35 6.0 1.5 1 11 1.4
800 x 2906 6.2 1 47 8.5 2.1 1 9 2.1

900 x 2906 7.7 1 45 10.1 2.3 1 13 2.5
1000 x 2906 5.6 1 53 7.8 1.6 1 7 1.4

6 Conclusions

In this paper we described a detailed performance analysis of two exact
algorithms BBDual and PDLoc for solving the UFLP. Our analysis revealed
bottlenecks of these algorithms and helped us to identify the procedures, which
contributed the most to the overall computational time. Moreover, this analysis
suggested how the trade off between the intensity of searching process for new
lower bound and the number of visited branches influences the computational
time.

We proposed a new DA procedure, which exploits the duality slacks in a more
efficient way and we implemented two other minor modifications to the BBDual
algorithm. To study the effects of these modifications we created a large set of
benchmarks based on real transportation networks. Our experiments confirmed
the significant improvement of both algorithms. Applying these modifications,
the BBDual* algorithm not only outperforms the original version of the PDLoc
algorithm, but it performs even better than improved version PDLoc*.

Our study of computation performance of particular procedures indicated the
direction in which we could improve the properties of both algorithms even
more. This idea is based on the classification of solved problems at the beginning
of the solving process and in adaptation of the procedures and their parameters to
the particular problem class. This issue will be a subject of our forthcoming
investigations.

Acknowledgements

The authors are grateful for the financial support by the Ministry of Education

of the Slovak Republic (project VEGA 1/3775/06) and thank two anonymous
referees for comments and suggestions that greatly improved the manuscript.

References

Alves, M.L., & Almeida, M.T. (1992). Simulated annealing algorithm for simple plant
location problem. Rev. Invest., 12.

Balinski, M. (1965). Integer programming: Methods, uses computation. Management
Science, 12, 254-313.

Beasley, J.E. (1990). OR-Library: distributing test problems by electronic mail. Journal of
the Operational Research Society, 41, 1069-1072.

Bilde, O., & Krarup, J. (1997). Sharp lower bounds and efficient algorithms for the simple
plant location problem. Annals of Discrete Mathematics, 1, pp 77-97.

Brandeau M.L., & Chiu, S.S. (1989). An overview of representative problems in location
research. Management Science, 35, 6, 645-674.

Conn, A.R., & Cornuéjols, G. (1990). A Projection method for the uncapacitated facility
location problem. Mathematical Programming, 46, pp. 273-298.

Cornuejols, G., Nemhauser, G.L. & Wolsey, L.A. (1990) The uncapacitated facility
location problem. In: Mirchandani, P.B., & Francis, R.L. (Eds.), Discrete Location
Theory, Wiley-InterScience, New York, pp. 119-171.

Crainic, T.G. (2003). Long-Haul Freight Transportation. Handbook of Transportation
Science, Springer New York, NY.

Erlenkotter, D. (1978). A Dual-Based Procedure for Uncapacitated Facility Location.
Operations Research, 26(6), 992-1009.

Galvão, R.D. (2004). Uncapacitated Facility Location Problems: Contributions. Pesquisa
Operacional, 24, 7 -38.

Ghosh, D. (2003). Neighborhood search heuristics for the uncapacitated facility location

problem. European Journal of Operational Research, 150, 150-162.
Goldengorin, B., Tijssen, G.A., Ghosh, D., & Sierksma G. (2003). Solving the Simple

Plant Location Problem using a Data Correcting Approach. Journal of Global
Optimization, 25(4), 377-406.

Goldengorin, B. Ghosh, D. & Sierksma, G. (2004). Branch and peg algorithms for the

simple plant location problem. Computers & OR 31(2) pp. 241-255.
Hale, T.S., & Moberg, C.R. (2003). Location Science Research: A Review. Annals of

Operations Research, 123, 21-35.
Janá ek, J., & Kova iková, J. (1997). Exact Solution Techniques for Large Location

Problems. In Proceedings of the International Conference: Mathematical Methods in

Economics, Ostrava, 80-84.

Janá ek, J. (2004). Service System Design in the Public and Private Sectors. In

Proceedings of the International Conference: Mathematical Methods in Economics,
Virt, 101 – 108.

Klose, A., & Drexl, A. (2005). Facility location models for distribution system design.
European Journal of Operational Research 162, 4-29.

Körkel, M. (1989). On then exact solution of large – scale simple plant location problem.
European Journal of Operational Research, 39(2), 157-173.

Kratica, J., Tosic, D., Filipovic, V., & Ljubic, I. (2001). Solving the simple plant location

problem by genetic algorithm RAIRO Operations Research, 35, 127-142.

Labbé, M., &Louveaux, F.V., (1997). Location problem. In: DellAmico N, Maffioli F and
Martello S (Eds). Annotated Bibliographies in Combinatorial Optimization. John
Wiley & Sons: New York, pp. 264–271.

Michel, L., & Hentenrych, P.V. (2004). A simple tabu search for warehouse location.
European Journal of Operational Research, 157(3), 576 - 591.

Mladenovi , N., Brimberg, J., & Hansen, P. (2006). A note on duality gap in the simple

plant location problem. European Journal of Operational Research, 174, 11-22.
Owen, H.O., & Daskin, M.S. (1998). Strategic facility location: A review. European

journal of Operational Research 111, 423-447.
Resende, M.G.C, & Werneck, R.F. (2006). A hybrid multistart heuristic for the

uncapacitated facility location problem. European Journal of Operational Research,

174, 54-68.

Sultan, K.S., & Fawzan, M.A. (1999). A tabu search approach to the uncapacitated

facility location problem. Annals of Operations Research, 86, 91 – 103.

