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Abstract 
 
This contribution is focused on an acceleration of branch and bound 

algorithms for the uncapacitated facility location problem. Our approach is based 
on the well - known Erlenkotters’ procedures and Körkels’ multi - ascent and 
multi - adjustment algorithms, which have proved to be the efficient tools for 
solving the large - sized instances of the uncapacitated facility location problem. 
These two original approaches were examined and a thorough analysis of their 
performance revealed how each particular procedure contributes to the 
computational time of the whole algorithms. These analyses helped us to focus 
our effort on the most frequent procedures. The unique contribution of this paper 
is a new dual ascent procedure. This procedure leads to considerable acceleration 
of the lower bound computation process and reduces the resulting computational 
time. To demonstrate more efficient performance of amended algorithms we 
present the results of extensive numerical experiments. 

 
Keywords: branch and bound, uncapacitated facility location problem, dual 

ascent algorithm, DualLoc, PDLoc 



  

1 Introduction 

 
Location science is a well-established field in applied mathematics and in 

operation research. Classification and broad overview of location problems and 
solution techniques can be found, for example, in Hale and Moberg (2003), 
Brandeau and Chiu (1989), Owen and Daskin (1998), Klose and Drexl (2005) 
and Labbé and Louveaux (1997). Location science comprises the vast amount of 
problem specifications and their variations. One of the basic but important 
problems is the uncapacitated facility location problem (UFLP) introduced in 
Balinski (1965). The uncapacitated facility location problem belongs to the most 
popular topics of theoretical research and computational analysis in the last four 
decades (Galvão (2004)). Its attractiveness originates from several characteristics 
of the problem. Although the problem is known to be NP-hard (Cornuejols et al. 
(1990)), there was soon found an effective exact algorithm, which enables to 
solve large-sized instances of the problem. This property is very rare in the 
family of integer programming problems. 

The other fact, which contributes to the attractiveness of this problem, is its 
broad applicability (Janá ek (2004)). The solving technique can be used not only 
for a design of the cost optimal structure of two-echelon distribution system, but 
it can be also embedded into various algorithms, which were designed to solve 
more complex location problems. As reported in (Galvão (2004)), it is possible 

to reformulate the classical maximum distance problem, p – median problem, 

and the maximum covering location problem into a form of the UFLP. 
Furthermore, the algorithm for the UFLP can be employed in an approximate 
solving of the p – centre problem. These circumstances motivated us to focus our 

research on improving the current exact solving techniques for UFLP.  
The UFLP consists of placing facilities such as warehouses, offices or 

hospitals in some sites of a given finite set I and in a consecutive unique 
assignment of customers from a given finite set J to the located facilities. The 
term “customer” can denote a real customer, but it can also stand for an 
inhabitant of some region, a patient in a hospital, or a retailer and so on. The 
possible operations, i.e. the facility location and the customer assignment, should 
minimize the value of a cost objective function. This objective function includes 
both the fixed charges fi paid for facility location at the location i and the costs cij 
for demand satisfaction of the j-th customer from the location i. 

Defining the variables yi {0,1} for i I (where yi = 1 means placing a new 
facility at location i) and the variables zij {0,1} for i I and j J (where zij = 1 

represents the assignment of location i to customer j) we get the following model 
of the UFLP: 
 



  

Minimize zP=
i I

 fi yi + 
Ii j J

 cij  zij  (1) 

Subject to 
i I

zij = 1 for j J (2) 

 zij  yi for i  I and j  J (3) 
 yi, zij  {0, 1} for i  I and j  J. (4) 
 
Many authors have dealt with this problem (Körkel (1989), Conn and 

Cornuéjols (1990) and Goldengorin et al. (2004)). Nevertheless, the now seminal 
procedure, DualLoc, proposed by Erlenkotter (1978) remains one of the most 
effective algorithms, and enables solutions in tractable times (Crainic (2002)). 
Inspired by this approach, the exact algorithms PDLoc (Körkel (1989)) and 
BBDual (Janá ek and Kova iková (1997)) were implemented and tested. These 
algorithms exploit the relation between the primary and dual formulation of the 
strong linear programming relaxation of the original problem. And when needed, 
the procedures, calculating the dual and induced primary solution, are followed 
by branch and bound method. The duality gap was analytically studied by 
Mladenovi  et al. (2006). Conn and Cornuéjols (1990) proposed an orthogonal 
projection method to solve the dual problem to optimality. The Boolean 
representation of the UFLP allows to construct the rules for reduction of the 
UFLP instances, and either to solve or reduce the size of solved subproblems 
(Mladenovi  et al. (2006), Körkel (1989), Goldengorin et al. (2004)). Such rules 
were tested in Goldengorin et al. (2004), showing the significant reduction of the 
computational time. The data correcting method (Goldengorin et al. (2003)) 
allows to determine the exact and approximate solutions of the UFLP. This 
method is applicable to broad spectrum of problems with super modular 
objective function and performs very well also for UFLP, when combined with 
elements of the Erlenkotter’s approach. 

The combinatorial background of the UFLP enables simple, but a very 
efficient application of modern heuristics. Alves and Almeida (1992) 
successfully used the simulated annealing method. A genetic algorithm was 
employed in Kratica et al., (2001) and tabu search strategies were used to solve 

UFLP in Michel and Hentenrych (2001) and in Sultan and Fawzan (1999). In 

Ghosh (2003) is compared the performance of several steepest descent local 

search heuristics using various neighbourhood structures. Choosing the best 

performing structure the tabu search strategy and the complete local search 

strategy were implemented. In summary, Ghosh concluded a very good 

performance of studied algorithms on UFLP of smaller and medium sizes (up to 

750 customers and 750 facility locations). The hybrid and multi-start heuristic, 

combining the characteristics of several metaheuristics, was applied in Resende 

and Werneck (2006) giving very good results for large set of numerical 

experiments. 

The remainder of our paper is organized as follows. In Section 2, we briefly 

introduce the existing exact solving methods PDLoc and BBDual. Section 3 

presents the results of preliminary experiments, which identify the critical points 

of both algorithms. The suggested improvements are then described in Section 4. 



  

The benefits of our rearrangements are reported in Section 5. To conclude this 

paper, in Section 6, we summarize our findings and suggest some possible 

directions of further research. 

2 Dual based lower bounding in branch and bound methods for 

UFLP 

The basic idea, which was originally introduced in the algorithm DualLoc and 
which was also followed by the algorithms BBDual and PDLoc, consists in 
relation between linear relaxation of the original problem (1) – (4) and the 
associated dual problem. 

After some reformulation and introduction of slack variables si, the dual 
problem (see Körkel (1989)) takes the following form: 

 

Maximize zD = 

Jj

vj    (5) 

Subject to 

Jj

max {0, vj - cij}+ si = fi   for i  I (6) 

  si  0    for i  I (7) 

 
Objective function value zD of any feasible solution is smaller or equal to any 

objective function value zP of any feasible solution of the linear relaxation of 
(1) - (4), according to the weak duality theorem. Thus, objective function value 
of arbitrary feasible solution of (6) - (7) constitutes a lower bound for optimal 
solution of the problem (1) - (4). 

To obtain a good lower bound from the dual problem, Erlenkotter (1978) 
suggested combination of two procedures. The first of them, the dual ascent 
algorithm (DA), introduced by Bilde and Krarup (1977), starts from an arbitrary 
feasible solution of the dual problem and subsequently increases the values of 
the vj variables as long as constraints (6) and (7) hold. 

The second procedure enables a further improvement of the dual solution 
obtained by the DA procedure. The dual adjustment procedure (DAD) searches 
for a configuration, in which a decrease of some variable vj by value  will create 
free space at least at two locations i and i’ from I, which can be used for an 
ascent of at least two different variables vk and vl (k  l  j). Each found 
configuration is exploited and followed by the dual ascent procedure. Having 
obtained a dual solution, an induced primal feasible solution can be obtained by 
applying the complementary constraints (8) – (10): 

 
(max{0, vj - cij})zij = 0  for i  I, j  J  (8) 

siyi = 0   for i  I   (9) 

(yi - zij) max{0, vj- cij}=0  for i  I, j  J  (10) 

 



  

The original PRIMA procedure ensures the validity of constraints (8) – (9) 
and constructs the associated primal solution to the dual solution such that the 
constraints (10) are violated as slightly as possible. All these procedures are 
described in more detail in Erlenkotter (1978), Körkel (1989) and Janá ek and 
Kova iková (1997). 

2.1 Algorithm BBDual 

If the variables yi are fixed, the optimal values of variables zij can be easily 
found. It is sufficient to assign the customer j to the facility i, for which the value 
of coefficient cij is minimal. Thus, the most complex problem is to determine the 
setting of the variables yi. The BBDual algorithm (see Janá ek and Kova iková 
(1997)) is based on the branch and bound method, in which branching is 
performed by fixing the variables yi to zeros or ones. 

The algorithm makes use of the depth first strategy. To decide if a given 
branch should be processed or excluded from the searching process, a lower 
bound of high quality is needed. Such lower bound can be obtained by 
successively performing the dual ascent and dual adjustment algorithms. These 
procedures provide dual feasible solution and the corresponding value of 
objective function serves as the searched lower bound. Furthermore, a 
corresponding primal feasible solution is generated. This is done by the PRIMA 
procedure, which follows the complementary conditions (8) – (10) for both the 
primal and the dual problem. The best-found primal solution is stored and its 
objective function value constitutes an upper bound of the optimal solution. 

2.2 Algorithm PDLoc 

The algorithms PDLoc and BBDual are built up on the same principles, which 
were introduced in the original algorithm DualLoc. However, the PDLoc 
algorithm comprehends a number of effective modifications and improvements 
on the original procedures and, in addition, it is enhanced by several new 
procedures. Similar to the BBDual algorithm, the PDLoc employs the branch and 
bound method to determine the optimal solution, but in contrast to the BBDual, 
the strategy of the lowest lower bound is used in the searching tree processing. 

Varying the order of customers in the PRIMA procedure, enables to open new 
locations each time and to explore a broader spectrum of primal solutions. This 
leads to a faster decrease of the upper bound and to the faster termination of 
searching process. 

In the case where the fixed charges fi are considerably higher than the 
allocation costs cij, the first dual solution is calculated by the dual multi-ascent 
procedure (MDA) instead of the dual ascent procedure. In the dual multi-ascent 
procedure, the variables vj are initially set to some high value and then they are 
adjusted to meet constraints (7). Executing the original dual ascent procedure 
completes this process. This rearrangement gives a considerable time saving as 
shown in the next sections. 



  

Other improvement consists of applying the simple exchange heuristic after 
the first primal solution is found. Moreover, when a big difference between the 
upper and lower bound occurs, it is reduced by the modified dual adjustment 
procedure. This procedure consists of two phases. The first of them is called the 
primal-dual multi adjustment (PDMAdj) and the second is the primal-dual 
adjustment (PDAdj). In the first phase, the values of variables vj are extensively 
reduced and subsequently gradually incremented using a modified dual ascent 
algorithm. In the second phase, the values of variables vj are reduced in the loop, 
variable by variable, and then the resulting dual solution is processed by the dual 
ascent algorithm. The number of repetitions of the dual adjustment procedure 
depends on the problem size. 

The used branch and bound searching scheme allows to fix the selected 
locations to be permanently opened (yi = 1) or closed (yi = 0) and thereby to 
reduce the size of the solved problem. To fix a variable, special conditions have 
to be satisfied. Evaluation of these conditions is time consuming, especially 
being deep in the searching three. Therefore the fixing of variables is preferred in 
the root of the searching tree (pre-processing). If a processed branch is deep in 
the searching tree, the variables are fixed only if there is a possibility to fix 
several variables simultaneously. For more detailed explanations we refer the 
reader to the original work Körkel (1989). 

3 Experimental evaluation  of algorithms BBDual and PDLoc 

We implemented both algorithms using the integrated development 
environment Delphi. In our implementation we restricted the values of the 
coefficients fi and cij to integers.  

Following our main goal to improve the computational properties of both 
algorithms, we started with a broad set of numerical experiments, testing the 
algorithms BBDual and PDLoc on a set of problems generated from the real-
world transportation networks. The experiments were not focused only on 
revealing the computational properties of the whole algorithms, but we studied 
also the computational complexity of particular procedures. It enabled us to 
compare their importance and mutual interactions. Special attention was paid to 
the dependence of computational time on the size of the problem and on the ratio 
between the coefficients fi and cij. 

3.1 Benchmarks 

Three sets of testing problems were used to perform the above-mentioned 
numerical experiments. The first set is formed by the well-known Beasley’s 
testing problems (Beasley (1990)) cap41, …, cap134, the sizes of which 
( I  J ) vary from 16 50 to 50 50 including three testing problems capa, capb 
and capc of size 100 1000. The values of coefficients in objective function were 
rounded to integers. 



  

Since the standard Beasley’s testing problems are relatively small we have 
generated two other sets, named K90 and G700. The set K90 consists of 90 
testing problems derived from the railway network of Slovak Republic. These 
medium sized problems are ordered in ten groups: 45 457, 91 457, 137 457, 
182 457, 229 457, 274 457, 319 457, 365 457, 411 457 and 457 457. The 
set G700 consists of 700 problems derived from the road network of Slovak 
Republic. This set consists from ten subgroups, sizes of which ranged from 
100 2906, 200 2906, as large as 1000 2906. Each subgroup contained 70 
benchmarks. For each size of the benchmark 10 different random subgraphs of 
the road network graph of corresponding size were generated. Each subgraph 
was used as a base for creating seven benchmarks by modifying the coefficients 
cij and fi to cover uniformly the whole spectrum of located facilities in optimal 
solution. For instance, for a problem of size 100 2906 the optimal cardinality of 
located facilities were 1, 17, 33, 50, 66, 83 and 100 respectively. The source 
code of the algorithms and the used benchmarks are available from the authors 
upon request. 

3.2 Preliminary results of numerical experiments 

We solved all problems by both algorithms to obtain the frequency in which 
the particular procedures are called. Together with computational time and its 
distribution over the procedures, we also evaluated the numbers of visited 
branches in the branch and bound method. All numerical experiments mentioned 
in this paper were performed on a PC equipped with Intel 2.4 GHz processor, 
256 MB RAM and the computational time was measured with preciseness of at 
least 60 ms. 

The BBDual algorithm solved the Beasley’s problems cap41, …, cap134 in 
less than 60 ms. The problems capa, capb and capc needed 0.5, 5.44 and 3.13 
seconds, respectively. The PDLoc algorithm solved the problems 
cap41, …, cap134 in an average time of 85 ms and the larger problems capa, 
capb and capc in 1.91, 47.18 and 107.16 seconds, respectively. 

The average computation times for problem sets G700 and K90 are listed in 
Table 1 and Table 2, respectively. 

 



  

Table 1 Average time in seconds and corresponding standard deviation for the 
class of benchmarks G700 

BBDual PDLoc Size of problems 
t [s] stdD t [s] stdD 

100x2906 5.343 12.64 1.44 0.93 

200x2906 27.16 68.33 1.80 0.99 

300x2906 52.95 143.11 2.40 1.48 

400x2906 127.06 337.58 2.74 1.82 

500x2906 134.17 340.52 5.29 6.52 

600x2906 277.59 700.73 5.21 5.54 

700x2906 277.70 704.57 6.12 5.45 

800x2906 497.26 1248.42 8.56 8.87 

900x2906 640.44 1652.65 11.45 11.25 

1000x2906 644.88 1595.72 10.60 11.19 

 
Table 2  Average time in seconds and corresponding standard deviation for the class 
of benchmarks K90 

BBDual PDLoc Size of problems 
t [s] stdD t [s] stdD 

45x457 0 0 0.13 0.05 

91x457 0.05 1.64 0.29 0.24 

137x457 0.14 34.6 0.57 0.64 

182x457 0.18 31.6 0.56 0.54 

229x457 1.11 5037.69 1.70 0.29 

274x457 0.87 554.98 0.86 0.54 

319x457 1.32 1467.69 1.23 1.05 

365x457 1.57 577.08 1.33 0.55 

411x457 2.59 5281.33 1.66 1.25 

457x457 6.71 8961295.25 6.96 7.05 

 
In addition to the total computational time we also measured the relative time 

consumed by each of the particular procedures. The averaged results, obtained 
from the experiments with the problem set G700, are shown in Figure 1. The 
abbreviations “DA”, “DAD” and “PRIMA” denote the relative average time 
consumed by the associated procedures. The “REST” includes the time spent by 
branching operations, lower bound computation, as well as necessary memory 
operations. The labels “Prima in“ and “DA in“ denote the time spent by 
procedures PRIMA and DA, which are called by other procedures (i.e., the time 
“DA in” includes the time spent by DA procedure when it has been called from 
the DAD procedure). This also explains why the sum over all procedures is 
larger than 100 %. 



  

 
a) 
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11.6 %

DA 

0.2 %

PRIMA
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PDLoc ext. 

32 %

REST 

11.5 %

 
b) 
 

Fig. 1  The average distribution of computational time among the procedures of  
BBDual algorithm in (a) and PDLoc algorithm in (b) (these results were obtained for 
set G700) 

 
Comparing the results listed in Table 1 and Table 2, it can be found that both 

tested algorithms reached almost the same average computational time solving 
the problems from the set K90. On the contrary, solving the large problems from 
the set G700 the BBDual algorithm was considerably slower. The standard 
deviation for the BBDual algorithm is also much higher. This can be explained 
by the inefficient performance of BBDual on a specific subset of solved 
problems. These problems can be characterized by the considerably higher 
values of fi in comparison to the values cij. Such disproportion of coefficients 
causes the ineffective performance of algorithm DA in its first run. This delay 
did not occur in the PDLoc algorithm, since it was eliminated by the MDA 
procedure. The distribution of computation time over the basic procedures DA, 
DAD and PRIMA differs considerably. The BBDual algorithm spent in average 
72.6% of the computational time by performing the DA procedure, while the 
PDLoc algorithm spent on this procedure only 11.8% of the total computational 
time. 

The total time consumed by the DAD procedure is approximately the same for 
both algorithms, but its distribution among the time-consuming activities differs 
considerably. In the case of BBDual, the DAD procedure spent 50.1% of the 
time performing the DA procedure. In contrary, the PDLoc algorithm needed 
only a small part of the time (11.6%) for the DA procedure embedded in DAD 
algorithm. This implies that the PDLoc algorithm focuses on a more intensive 
searching for improving operations. As a consequence the average number of 
inspected branches in the branch and bound method decreases (see Table 3). 

 



  

Table 3 The average number of inspected branches (PV), the minimal number of 
inspected branches (Min PV), the maximal number of inspected branches (Max PV) 
and the corresponding standard deviation (Std PV) (these results were obtained for 
set G700) 

BBDual PDLoc Size of 
problems PV Min 

PV 
Max 

PV 
Std PV PV Min 

PV 
Max 

PV 
Std PV 

100 x 2906 6.9 1 59 13.9 1 1 1 0.0 
200 x 2906 18.5 1 169 40.6 1 1 1 0.0 
300 x 2906 15.1 1 181 37.9 1.1 1 3 0.5 
400 x 2906 27.0 1 389 69.7 1.1 1 3 0.5 

500 x 2906 22.9 1 337 56.1 1.6 1 7 1.3 
600 x 2906 37.3 1 429 94.5 1.5 1 7 1.3 
700 x 2906 34.8 1 461 79.2 1.5 1 5 1.0 

800 x 2906 58.9 1 470 119.7 2.2 1 9 2.1 
900 x 2906 58.9 1 630 133.4 2.3 1 11 2.2 
1000 x 2906 48.9 1 693 113.6 1.7 1 11 1.7 

 
The performed analysis indicated the benefits of the MDA procedure, and also 

gave us a notion about the time consumed by particular procedures and allowed 
us to identify the most critical parts of the both algorithms. Moreover, the 
analysis helped us to estimate, how the intensity of searching for new 
improvements in the DAD procedure influences the number of visited branches 
in the branch and bound method. 

4 Rearrangements of the algorithms BBDual and PDLoc 

The preliminary experiments and the subsequent analysis of results showed 
that the DA procedure is the greatest time consumer as concerns the BBDual 
algorithm. The next finding, which follows from the analysis, is that the MDA 
procedure considerably improves the computational process when the algorithm 
PDLoc is used. Taking into account these two observations, we have focused our 
efforts on an improvement of the DA procedure and on an overall rearrangement 
of the BBDual algorithm utilizing the MDA procedure. 

 

4.1 New scheme of the DA procedure 

The original DA procedure (see Figure 2) processes the set of relevant 
customers J+, customer by customer, in an order, which follows an input 
sequence of the relevant customers. At each step, the variable vj corresponding to 
the customer j J+, is incremented by a value d. The value d is determined as a 
maximal value, which satisfies the constraints (6). Hence, it is obvious, that this 
variable cannot be increased in the further steps, and thus the customer j can be 
excluded from the set J+. This procedure is repeated until J+ is empty. 
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Procedure DA (J+) 
While |J+| > 0, do : 
 Get next j   J+. 
 Set d1 = mini si with i  {i: cij  vj}. 
 Set d2 = mini (cij - vj) with i  {i: cij > vj}. 

If d1 > d2, set d = d2. Else, delete j from J+ and set d = d1. 
If d > 0, then:  

  For each i  {i: cij  vj}, set si = si – d. 
  Set vj = vj + d and zD = zD + d. 
Terminate. 
 
Fig. 2  The original DA procedure as it was introduced by Körkel (1989) 
 
In the following, we will show that the performance of this procedure 

significantly depends on the order in which the set of relevant customers is 
processed. This drawback is explained on the example with two possible 
locations i1, i2 and three customers j1, j2 and j3, depicted in Figure 3. Let us 
associate two slack variables 

1i
s  and 

2i
s  with the locations i1 and i2. An edge 

connecting a customer j to a location i denotes that the inequality vj  cij holds for 
this pair of subscripts. Denoting by symbol Kj the cardinality of set {i I: cij  vj} 
for a customer j, we get =

1j
K 2, =

2j
K 1 and =

3j
K 1. 

The DA procedure processes the customers in the order, which is given by the 
sequence in which they entered the procedure (i.e. first to be processed is the 
customer j1 followed by customers j2 and j3). If 
the processing of customer j1 enables an increase 
of the variable 

1j
v by value , then the lower 

bound increases exactly by . The maximal 
theoretical increase of the lower bound is given 
by the sum of 

1i
s  and 

2i
s . In the example 

depicted in Figure 3, the increment  has to be 
subtracted from the both slack variables 

1i
s  and 

2i
s , and it has to meet constraints (6). It means 

that the theoretical capacity
1i

s +
2i

s  is reduced 

by 2  in order to increase the lower bound by . 
Taking into consideration the theoretical 

capacity and its possible decrease by modifying 
the variables vj we formulate a new DA* 
procedure, which exploits the potential for the 
increasing of the lower bound in a more efficient way. Our approach is based on 
prioritising the customers, which selection promises a larger increase of the 
lower bound zD (5) in the next steps. We will order ascendingly the relevant 
customers J+ according to cardinalities of Kj. The benefit of this scheme can be 
demonstrated on the example depicted in Figure 3. 



  

Having applied the designed prioritisation rule, the customers are processed in 
the order j2, j3 and j1. If processing of the customer j2 enables an increase of the 
variable

2j
v  by , then considering constraints (6) only the slack variable s2 has 

to be reduced by . In this way, the theoretical capacity is reduced by value  
and the lower bound, accordingly, increases by . As demonstrated, this 
approach may reduce the sum of slack variables si less than the original DA 
procedure does, keeping the same increase of variables 

2j
v . 

 
Procedure DA* (J+) 
Order the set J+ of relevant customers into a sequence j1, j2,... jk,...jn 
ascendingly with respect to the cardinalities Kj. 
For k = 1 to |J+| do: 

Set j:=jk. 
Set d=min{min{si:i I, cij  vj },{cij-vj :i I, cij > vj }}. 
If d > 0, then: 

Update si for i I, cij  vj by si:=si-d. Set vj:=vj+d and zD = zD + d. 
If the cardinality Kj has increased, then reorder the sequence of 
customers jk, ..., jn. 

Terminate. 
 
Fig. 4  New DA* procedure 

4.2 Further rearrangement of the algorithms 

Based on the above-mentioned analysis and the preliminary experiments we 
implemented and verified the following rearrangements: 

• We applied the DA* procedure in the both algorithms. 
• We embedded the MDA procedure into the BBDual algorithm to 

improve its efficiency in the cases, when the ratio of fixed charges fi 
and costs cij is large. 

• We amended the evaluation of branches in BBDual algorithm. Both 
newborn branches are evaluated simultaneously and the more 
perspective branch is processed first. 

In this way, we formed new versions of the original algorithms BBDual and 
PDLoc. To distinguish the original and the new versions of algorithms, the 
modified algorithms are denoted as BBDual* and PDLoc*. It should be noted 
that all the above-described modifications were studied also separately. None of 
them brought larger improvements in the computational time as when used 
individually. 

5 Results of numerical experiments 

The effects of suggested rearrangements were extensively examined by 
numerical experiments performed on three sets of testing problems, described in 



  

Section 3.1. Similarly to Section 3.2, we evaluated the computational time and 
its distribution among the particular procedures together with the number of 
inspected branches.  

Figure 5 gives an evidence of a significant time reduction, when the DA* 
procedure is used. The total usage was reduced from 72.6 % to 9% in the 
BBDual* algorithm as well as from 11.8% to 1.4 % in the PDLoc* algorithm. This 
result suggests that our new DA* procedure has a significant influence on the 
performance of the both algorithms. 

 
a) 

 
b) 

Fig. 5 The average distribution of computational time among the procedures of BBDual* 

algorithm in (a) and PDLoc* algorithm in (b) (these results were obtained for set G700) 
 

The BBDual* algorithm solved Beasley’s testing problems cap41, …, cap134 
in less than 60 ms. The problems capa, capb and capc were solved in 0.33, 1.32 
and 1.87 seconds, respectively. The PDLoc* algorithm solved problems 
cap41, …, cap134 in an average time of 13 ms and the larger problems capa, 
capb and capc in 0.55, 0.55, and 19.77 seconds, respectively. 

Comparison of these results with the performance of the original algorithms 
reported in Section 3.2, indicates that the proposed modifications brought 
considerable time savings. 

In Table 4, we report the average computational time and the standard 
deviation in which the BBDual* and PDLoc* algorithms solved the testing 
problems G700. To facilitate the comparison with the original algorithms, Table 
4 and Table 5 list the computational time of the original algorithms in the 
columns labelled BBDual and PDLoc. 

 



  

Table 4  Average time in seconds and corresponding standard deviation  
for benchmarks G700 

BBDual BBDual* PDLoc PDLoc*
 Size of problems 

t [s] t [s] StdD t [s] t [s] StdD 

100x2906 5.343 0.28 0.29 1.44 0.77 0.34 

200x2906 27.16 0.41 0.39 1.80 0.87 0.22 

300x2906 52.95 0.74 0.64 2.40 1.20 0.90 

400x2906 127.06 1.01 0.47 2.74 1.46 0.88 

500x2906 134.17 1.75 1.05 5.29 2.83 0.90 

600x2906 277.59 2.54 1.78 5.21 3.64 2.88 

700x2906 277.70 3.90 2.77 6.12 4.63 4.38 

800x2906 497.26 5.07 4.23 8.56 6.45 6.35 

900x2906 640.44 7.24 6.31 11.45 8.89 8.83 

1000x2906 644.88 7.07 5.89 10.60 7.47 8.08 

 
Presented results show that our modifications led to considerable decrease of 

the overall computational time. We should note that the using of MDA procedure 
in algorithm BBDual also contributed to this significant reduction. A similar 
reduction of computational time was also observed, when the benchmarks K90 
were processed (see Table 5). 

 
Table 5  Average time in seconds and corresponding standard deviation  
for benchmarks K90 

BBDual BBDual* PDLoc PDLoc*
 Size of problems 

t [s] t [s] StdD t [s] t [s] StdD 

45x457 0 0.01 0.02 0.13 0.09 0.02 

91x457 0.05 0.02 0.03 0.29 0.13 0.04 

137x457 0.14 0.08 0.13 0.57 0.29 0.31 

182x457 0.18 0.12 0.12 0.56 0.30 0.22 

229x457 1.11 0.62 0.90 1.70 0.80 1.27 

274x457 0.87 0.44 0.37 0.86 0.43 0.27 

319x457 1.32 1.13 1.41 1.23 0.97 0.76 

365x457 1.57 8.53 20.75 1.33 0.97 0.47 

411x457 2.59 14.54 31.02 1.66 1.14 0.98  

457x457 6.71 7.60 10.80 6.96 4.78 6.92 

 
Table 6 reports on the average number of inspected branches, the minimal and 

maximal numbers of inspected branches and the standard deviation for the 
numbers of inspected branches. These outputs together with the computational 
time give evidence of the remarkable acceleration of the both algorithms. 

 



  

Table 6  The average number of inspected branches (PV), the minimal number of the 
inspected branches (Min PV), the maximal number of inspected branches (Max PV) 
and the corresponding  standard deviations (Std PV) (these results were obtained for 
set G700) 

BBDual* PDLoc* Size of 
problems PV Min 

PV 
Max 

PV 
Std PV PV Min 

PV 
Max 

PV 
Std PV 

100 x 2906 1.4 1 5 0.9 1 1 1 0 
200 x 2906 1.2 1 3 0.6 1 1 1 0 

300 x 2906 1.8 1 7 1.5 1.2 1 5 0.7 
400 x 2906 1.5 1 7 1.2 1.0 1 3 0.2 
500 x 2906 2.7 1 11 2.4 1.5 1 7 1.2 

600 x 2906 3.1 1 17 3.4 1.3 1 5 0.8 
700 x 2906 4.9 1 35 6.0 1.5 1 11 1.4 
800 x 2906 6.2 1 47 8.5 2.1 1 9 2.1 

900 x 2906 7.7 1 45 10.1 2.3 1 13 2.5 
1000 x 2906 5.6 1 53 7.8 1.6 1 7 1.4 

 

6 Conclusions 

In this paper we described a detailed performance analysis of two exact 
algorithms BBDual and PDLoc for solving the UFLP. Our analysis revealed 
bottlenecks of these algorithms and helped us to identify the procedures, which 
contributed the most to the overall computational time. Moreover, this analysis 
suggested how the trade off between the intensity of searching process for new 
lower bound and the number of visited branches influences the computational 
time.  

We proposed a new DA procedure, which exploits the duality slacks in a more 
efficient way and we implemented two other minor modifications to the BBDual 
algorithm. To study the effects of these modifications we created a large set of 
benchmarks based on real transportation networks. Our experiments confirmed 
the significant improvement of both algorithms. Applying these modifications, 
the BBDual* algorithm not only outperforms the original version of the PDLoc 
algorithm, but it performs even better than improved version PDLoc*. 

Our study of computation performance of particular procedures indicated the 
direction in which we could improve the properties of both algorithms even 
more. This idea is based on the classification of solved problems at the beginning 
of the solving process and in adaptation of the procedures and their parameters to 
the particular problem class. This issue will be a subject of our forthcoming 
investigations. 
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