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Abstract

We propose a versatile concept of the adaptive aggregation framework for the facility location problems
that keeps the problem size in reasonable limits. Most location-allocation problems are known to be NP-
hard. Thus, if a problem reaches the critical size, the computation exceeds reasonable time limits, or all
computer memory is consumed. Aggregation is a tool that allows for transforming problems into smaller
sizes. Usually, it is used only in the data preparation phase, and it leads to the loss of optimality due to
aggregation errors. This is particularly remarkable when solving problems with a large number of demand
points. The proposed framework embeds the aggregation into the solving process and it iteratively adjusts
the aggregation level to the high quality solutions. To explore its versatility, we apply it to the p-median
and to the lexicographic minimax problems that lead to structurally different patterns of located facilities.
To evaluate the optimality errors, we use benchmarks which can be computed exactly, and to explore the
limits of our approach, we study benchmarks reaching 670 000 demand points. Numerical experiments reveal
that the adaptive aggregation framework performs well across a large range of problem sizes and is able to
provide solutions of higher quality than the state-of-the-art exact methods when applied to the aggregated
problem.

Keywords: data aggregation, location analysis, adaptive aggregation, framework, heuristics

1. Introduction

1.1. Motivation

High quality design of public service systems or private supply chains is of significant importance due
to tight public budgets and today’s highly competitive globalised environment, as it has the potential to
facilitate collaboration mechanisms to build innovative partnerships leading to new types of businesses and
services. To ensure efficient public spendings and to reach low transportation costs and high performance
of service systems, analytical tools able to provide an effective decision support are required. Three main
pillars of a decisions support tool are the model that captures important aspects of a real-world system,
the efficient and flexible solving method and high fidelity input data. The field data describing a system’s
operation and the relevant characteristics of external environment are today more available than ever, due
to the recent progress in ICT technologies enabling new concepts of sensing, data transmission, data storage
and data processing, and due to open data initiatives enabling data sharing. Most approaches to the design
of public service systems or supply chains focus on the development of new models or solving methods. In
contrast, this paper is focused on the input data, and it examines the potential of how aligning aggregation
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of the input data with high quality solutions could help increase the quality of solutions provided by a
decision support tool when data aggregation is unavoidable due to the high demand of solving methods on
computational resources.

1.2. Review of literature on location-allocation problems

The need to design a public service system or a private supply chain often leads to a location-allocation
problem. Researchers have been formulating and studding location-allocation problems for decades, and
they have recognized a variety of forms depending on the particular application, objectives and con-
straints (Daskin. M., 1995; Drezner, 1995; Eiselt and Marianov, 2011, 2015).

Two basic problem classes are formed by continuous location problems where facilities are located in a
plain or in some other type of a continuous set, and discrete location problems, where locations of facilities
are selected from a finite set of options. According to the type of the objective, it is common to differ-
entiate between minisum problems (minimising the sum of customers’ utilities), mimimax (minimising the
maximum customer’s utility), and covering problems (ensuring that either each or the maximum number
of customers’ utilities reach the pre-defined quality) (Eiselt and Marianov, 2011). Nowadays, most prob-
lems are optimized with respect to a multicriterial objective function. The examples include bi-objective
and k-objective location problems that incorporate operational goals such as total setup costs, fixed costs,
average time/distance travelled, number of located facilities, fuel consumption, or also more recently, en-
vironmental and social goals based on land use, congestion, noise, pollution or tourism (Doerner et al.,
2007; George and ReVelle, 2003; Hamacher et al., 2002; Nickel et al., 2005). For a comprehensive overview
of multicriterial location problems, see Farahani et al. (2010). Similarly, various approaches are considered
as the primary attractiveness determinant when allocating a customer to the located facilities. The basic
approach is to associate customers with a single, e.g. the closest (Hakimi, 1965), or with multiple facility
locations (Achabal, 1982). The approach by D. L. Huff (1962), allocates a share of customer’s demand to all
located facilities using the gravitational force formula. Another well-known model is the multinomial logit
model (Gupta Sachin et al., 1996). More complex approaches consider several determinants simultaneously,
e.g. the travel time and the waiting time (Marianov et al., 2008). If customers do not have knowledge of the
functionality of facilities, they may chose to follow the strategy of visiting a number of pre-assigned facilities
until they acquire the service or give up trying after a given number of unsuccessful trials (Yun et al., 2015).

Over the last few decades, the location research has addressed also many modelling challenges directly
induced by practical applications. Among them we mention efforts aiming at capturing uncertainties in
the operation of a system and the development of complex, but tractable formulations of problems that
combine strategic location decisions with tactical and operational decisions associated with the organization
of services and flows. In the context of the supply chain network, the uncertainty concerns both the
demand and the supply (Snyder and Daskin, 2005). The authors in An et al. (2014) consider a robust
optimization model, where k facilities may fail. The problem is optimized with respect to the multicriterial
objective function aiming at finding a trade-off between the operational costs of the least costly and the most
costly disruptive scenarios. The research paper Fei and Mahmassani (2011) is an example of the demand
uncertainty minimisation for optimal sensor locations where a multi-objective problem maximising the link
information gains in the conjunction with the demand coverage applying hybrid greedy randomized adaptive
search procedure to identify the Pareto frontier is presented. An early attempt to address the combined
location-routing problem is the work by Perl and Daskin (1985). Ouyang et al. (2015) presented a modelling
approach for the median type of facility location under elastic customer demand and traffic equilibrium in
a continuous space. The study Ponboon et al. (2016) formulates a mathematical model, and it proposes
a solving method based on the branch and price (column generation) algorithm for the location routing
problem with time windows. Romero et al. (2016) developed a model to analyse the facility location and
routing in the context of hazardous materials transportation. Detailed review on location-routing problems
is provided in Prodhon and Prins (2014).

The proposed adaptive aggregation framework is broadly applicable. To evaluate it, we selected two
problems. An archetypal example for a location-allocation problem is the p-median problem (Hakimi, 1965).
The number of algorithms applicable to this problem available in the literature is large. One of the most
successful exact algorithms is ZEBRA (Garćıa et al., 2011). ZEBRA is based on the radial formulation
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of the p-median problem and for a narrow range of located facilities allows for solving problems up to 80
000 demand points. Thus, problems of larger size are solved by classical heuristics or metaheuristics. Ex-
amples of classical heuristics include: greedy heuristics that grow the number of located facilities one by
one (Whitaker, 1983), dual accent heuristics based on the dual of the relaxed integer programming for-
mulation of the problem (Erlenkotter, 1978), interchange heuristics where facilities are moved iteratively to
vacant sites if it reduces the value of the objective function (Teitz and Bart, 1968) and the alternate heuristic
(ALA) (Cooper, 1964, 1972; Maranzana, 1964). In the first step of ALA heuristic customers are divided into
p subsets, and single optimal location is determined for each group. In the second step, allocations of cus-
tomer are re-optimized. Location and allocation steps are alternated until no further improving changes are
possible. In the literature there are several papers proving the convergence of ALA heuristic (Drezner, 1992;
Lawrence M. Ostresh, 1978). For comprehensive overview of heuristic and metaheuristic algorithms to the
p-median problem please refer to Mladenović et al. (2007). The second selected problem is the lexicographic
minimax facility location problem (Ogryczak, 1997). This problem is motivated by the need arising in some
applications to consider the equitable access of customers to located facilities. The goal is to find the location
of facilities that corresponds to the lexicographically smallest non-increasingly ordered vector of disutilities
that are associated with allocations of customers to facilities. The vector can be rearranged, where the k-th
term in the vector is the number of occurrences of the k-th worst possible unique outcome (disutility). The
optimal solution is then found by minimising the value of the first vector element followed by the minimisa-
tion of the second element without worsening the first term and so on (Ogryczak, 1997). As an alternative,
the ordered outcomes approach and the ordered values approach were proposed in Ogryczak and Śliwiński
(2006). The latter approach is more efficient, however, the size of solvable instances is very small. A con-
venient technique for interactive analysis, where facilities are located with respect to the objective function
taking into account lexicographic minimax combined with the minisum term, was proposed in Ogryczak
(1999). The approach is based on the reference distribution method which can be steered by manipulating
few parameters only and allows to take into account aspiration values of assigned distances defined by the
user. The above mentioned approaches to the lexicographic minimax optimization result in a specific form
of the mathematical model that is supposed to be solved by a general purpose solver. This limits the size
of solvable problem to less than 1 000 demand points. Approximative algorithm ALEX that provides high
quality solutions and enables to extend the size of solvable problems to several thousands was proposed
in Buzna et al. (2014).

1.3. Review of literature on aggregation errors

Aggregation methods have been a subject of intense research in the fields of transport economics, opera-
tions research and geographic information systems. They lead to problems of smaller size where the demand
points (DPs) are replaced by the aggregated demand points (ADPs). The simplest aggregation strategies
are dividing geographical space using regular grid (Hillsman and Rhoda, 1978) or selecting randomly a sam-
ple of demand points that represent them all (Goodchild, 1979). As an alternative, Erkut and Bozkaya
(1999) describes the iterative aggregation of pairs of DPs that are close to each other based on a defined
measurement. In contrast to the previous methods, the row-column aggregation method (Francis et al.,
1996; Andersson et al., 1998) is able to capture the population clusters present in the data by constructing
an irregular grid, considering the spatial distribution of demand, by applying the lexicographic ordering to
the lengths of the shortest paths that connect customers with the closest located facilities. An example
of the method utilizing neighbourhood relations among DPs is the work Fotheringham et al. (1995) and
optimal zoning for the aggregation is used in Openshaw (1977) and Openshaw and Rao (1995). Refer-
ence Salazar-Aguilar et al. (2011) introduces a mathematical model able to achieve balanced district territo-
ries with the pre-defined tolerance. The work Assunção et al. (2006) uses a graph to represent neighbourhood
relations using the minimum spanning trees.

The data aggregation and the use of ADPs tends to lead to various types of location errors (Francis et al.,
2009; Erkut and Bozkaya, 1999). To be able to minimise the effects of aggregation errors, the detail under-
standing of possible sources of errors is needed. We collected information about the sources of errors from
the available literature, organized them in two groups, and we briefly explain them in Table 1.
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problem.

Replace the distance by the average distance
from all DPs aggregated in the ADP to its
centroid.

B If an ADP is candidate location for a facility,
and at the same time it represents a customer,
the distance between the facility location and
the customer is often incorrectly set to zero.

Replace the zero distance by the average dis-
tance from DPs aggregated by the ADP to the
centroid of the ADP.

C DPs aggregated within an ADP are assigned
to the same facility.

Re-aggregate ADPs and find for each DP the
closest facility .

D Facilities are established in ADP centroids and
not in DPs, thus locations of facilities are al-
most certainly not optimal.

Disaggregate ADPs in the close neighbour-
hood of located facilities.
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UD This error is introduced when uniform demand
is assumed.

Misestimated
demand.

Use high granularity data to model the de-
mand.

RA Aggregation method does not take into con-
sideration population clusters.

Aggregation
method.

Use aggregation methods that consider popu-
lation clusters.

FL Evaluation of solutions is solely based on com-
paring the sets of located facilities. Two very
different sets of located facilities may have
similar values of the objective function.

Unilateral cri-
terion used
to evaluate
the quality of
solutions.

Consider optimality error or objective func-
tion value, when evaluating solutions.

EC The effects of aggregation are often evaluated
with respect to one (optimal) solution.

Neglected
effects of aggre-
gation on the
relevant subset
of solutions.

Evaluate the effects of aggregation on the rel-
evant (e.g. the best quality) set of solutions.

DF The candidate locations for facilities, while of-
ten being a few, are aggregated equally as DPs
representing customers.

Aggregation
method.

Aggregate separately the candidate location
and customer DPs.

OA Use of an unnecessarily high level of aggrega-
tion.

Choice of pa-
rameters.

Solve as large location problems as the used
algorithm allows.
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The aggregation errors in the first group are caused by the loss of information when DPs are replaced
by the aggregated demand points. Each ADP is often modelled as a polygon that is represented by its
centroid (Francis et al., 2009). Consequently, many DPs are represented by one centroid, what results in
various types of errors. In Hillsman and Rhoda (1978) the authors named these errors as source errors,
and introduced the source A, B and C errors. Elimination of the source A and B errors was studied
in Current and Schilling (1987). Minimization of the source C error was analysed in Hodgson and Neuman
(1993). Source D error and the possibilities how it can be minimised were studied by Hodgson et al. (1997).
Source errors A, B, C and D are illustrated on examples in the supplementary information file.

The second group of aggregation errors involves the sources of errors that are often made by the an-
alysts (Erkut and Bozkaya, 1999), responsible for the preparation of the input data and the execution of
spatial analyses. Typical examples of such errors are the uniform demand distribution (UD), ignoring popu-
lation clusters (RA), using incorrect methods to evaluate the effects of the data aggregation focusing solely
on the optimal solution (FL) or location pattern (EC), the same aggregation method applied to customers
and candidate locations (DF) and an exceedingly high level of aggregation (OA).

1.4. Scientific contributions and structure of the paper

The majority of approaches to location-allocation problems focus either on the formulation of more real-
istic mathematical models or on the design of improved solving methods. The role of the data aggregation
is often overlooked. Aggregation is often unavoidable, as, for example, the state-of-the-art exact algo-
rithms (Garćıa et al., 2011) when applied to the p-median problem are limited to 20 000 DPs and to 90 000
DPs either when the number of the located facilities falls into a narrow interval, or when using the heuristic
algorithms (Avella et al., 2012). Although the sources of aggregation errors are well understood, tradition-
ally, the data describing the problem being solved are spatially aggregated only once, before executing the
numerical analysis. Thus, the minimisation of aggregation errors in the input data does not reflect specifi-
cally on the spatial patterns that are associated with high quality solutions, and thus aggregation errors are
not curtailed. The development of computational approaches that could better utilize opportunities that
big data age presents in solving location problems has been also recently recognized to have big potential to
solve emerging issues concerning sustainability and environmental challenges (Tong and Murray, 2017). By
integrating together existing aggregation methods, elimination of aggregation errors and solving algorithms
to the adaptive aggregation framework, this paper makes two main scientific contributions. Our first con-
tribution is to propose the concept of the adaptive aggregation framework that minimises the aggregation
errors by iteratively aggregating the input data for the solved problem by taking into account the best found
solutions from individual iterations. Hence, the input data are at the final stage aggregated in a way that
minimises aggregation errors for the resulting solution. The proposed framework is applicable to a large
spectrum of location-allocation problems and can be viewed in two ways: as a solving algorithm or as an
aggregation method while minimising aggregation errors. Our second contribution is to carry out extensive
computational experiments and analysis to gain the understanding of possible benefits of this approach and
the role of its parameters.

The paper is organized as follow: section 2 introduces the generalized formulation of the location-
allocation problem. In section 3, we describe the data requirements, and we introduce the adaptive aggrega-
tion framework. The results of numerical experiments are reported in section 4. To conclude, we summarise
our main findings in section 5.

2. Problem formulation

The applicability of the adaptive aggregation framework is broad and thus it is difficult to describe
formally all applicable problems. To outline a class of applicable problems, while keeping the description
concise, we formulate a generalized location-allocation problem. It should be noted that it is not only the
mathematical formulation that determines the applicability of the proposed framework. Another important
aspect is that the problem is solved within large spatial area for a large number of customers, and to adjust
the size of the problem to the available solving method the input data have to be to a large degree aggregated.
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We assume a graph G(V , E) representing the transportation infrastructure, V is a set of nodes and E is
a set of edges (i, j), where i, j ∈ V . The set J ⊆ V of demand points describes the locations of customers
and the set I ⊆ V represents the possible locations of facilities. Often, to each customer location j ∈ J we
associate the weight wj expressing its relative importance, for example, in terms of the number of inhabitants
living in the area represented by the DP. By the symbol x ∈ B|I|,|J |, where B = {0, 1} is boolean domain,
we denote the vector of binary allocation variables xij , for i ∈ I and j ∈ J , taking value 1, when the
customer j is allocated to the location i and value 0, otherwise. For the vector of location variables we
use the symbol y, where for i ∈ I, yi = 1 if the facility is located at DP i and yi = 0, otherwise. We
define the vector of variables z ∈ Q to account for additional decisions that can be associated with the
location-allocation problem. The domain Q is a Cartesian product of domains of individual variables z that
are typically real or binary, but other domains are also possible. Making use of this notation, we define the
generalized location-allocation problem as:

Minimize f(x,y, z) (1)

subject to
∑

i∈I

xij = 1 for j ∈ J (2)

xij ≤ yi for i ∈ I, j ∈ J (3)
∑

i∈I

yi = p̂ (4)

fl(x,y, z) = 0 for l ∈ L (5)

x ∈ B|I|,|J | (6)

y ∈ B|I| (7)

z ∈ Q. (8)

The core of the problem (1)-(8) is comprised of the location-allocation constraints (2)-(4). The con-
straints (2) ensure that each DP is allocated exactly to one facility. The constraints (3) allow for allocating
customers only to the located facilities, and the constraints (4) make sure that exactly p̂ facilities are lo-
cated. An alternative to the constraints (4) is to minimise the sum of the fixed costs that are associated with
the location of facilities (Erlenkotter, 1978). The objective function f : B|I|,|J | × B|I| × Q → R typically
represents costs or another kind of disutilities that are associated with the quality of the solution as it is
perceived by individual customers. The set of the constraints (5) generalizes restrictions that are implied
by additional decisions to the location-allocation decisions by combining them with some other types of
problems. Please note that this formulation captures inequalities that can be turned to equalities by adding
slack variables.

Typically, it is assumed that I = J , i.e., facilities can be located in all demand points. To simplify the
notation, from here on we use this assumption and we recover the p-median (Hakimi, 1965; Garćıa et al.,
2011) for L = ∅, Q = ∅ and f(x,y) =

∑
i∈J

∑
j∈J cijxij , where cij is the cost associated with the allocation

of the customer j ∈ J to the facility location i ∈ J . One possibility is to set cij = wjdij , where the symbol
dij denotes the shortest path length from the customer j ∈ J to the potential facility location i ∈ J and
weight wj represents the number of inhabitants associated with the customer location j ∈ J .

While again considering L = ∅, Q = ∅, we can define the lexicographic location problem (Ogryczak,
1997). We identify all unique shortest path lengths Dk, k = 1, . . . ,Kmax in the set of all feasible values dij ,
where Kmax is the number of unique dij values. We order the lengths Dk into the descending sequence.
Thus, D1 will denote the maximal possible distance between a customer and a facility. Then, for any feasible
solution, we create a system of subsets Wk, for k = 1, . . . ,Kmax, where the pair (i, j) ∈ Wk if xij = 1 and
dij = Dk. Further, for each subset Wk we define the following function:

hk(x) =
∑

(i,j)∈Wk

wjxij for k = 1, . . . ,Kmax. (9)
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Using this definition, we formulate the lexicographic location problem, where the objective is to find the
solution that corresponds to the lexicographically smallest vector:

(h1(x), h2(x), . . . , hKmax
(x)). (10)

Apart from these two generic problems, we can find in the literature plethora of optimization problems
that add various types of constraints to meet the requirements of specific applications but still include the
location-allocation constraints (2)-(4) to determine strategic decisions about the spatial organization of a
system. In Frade et al. (2011) an approach was proposed to locate the charging stations for electric vehi-
cles where the additional constraints (5) make sure that each located facility is equipped with a sufficient
number of charging points to meet the estimated number of daytime and nighttime refuelling operations.
The problem to determine sales representative locations and allocate to them contiguous sales territories,
while maximising the sum of profit contributions, was described in Haase and Müller (2014). The mul-
tiobjective police districting problem that is balancing the demand and considering the compactness of
the districts, where the blocks of a city are allocated only to the located district centres, was introduced
in Bucarey et al. (2015). The location-allocation problems were used in the context of optimizing ves-
sels for maritime and rescue operations, while balancing the workload (Pelot et al., 2015). Furthermore,
location-allocation constraints (2)-(4) naturally come out, when optimally locating the vehicle identification
sensors (Gentili and Mirchandani, 2015). In order to measure the travel time information and maximise
the volume of the monitored traffic, two (upstream and downstream) readers are located on the network
edges and allocated to monitored paths. In all these, but also in many other cases, the adaptive aggrega-
tion framework could be either directly or after some small rearrangements applied to enhance the spatial
accuracy of the location-allocation decisions.

3. Adaptive aggregation framework

The main objective is to handle large instances of location-allocation problems and to provide solutions of
higher quality than the conventional methods. We will use the term original location problem (OLP) to refer
to the unaggregated location-allocation problem that we aim to solve. The OLP is defined by the geometric
graph G(V , E) interconnecting the demand points j ∈ J ⊆ V and by values wj defining the associated
demand (see Figure 2a). Original location problem is too large to be solved directly by conventional solvers,
thus, the aggregation is used to reduce its size. The aggregated location problem (ALP) is defined by the
set of aggregated demand points K. Each aggregated demand points is represented by the centroid of the
corresponding area. Here, we use as the centroid the most central demand point (see Figure 2b). Thus, the
set of aggregated demand points is a subset of original demand points (K ⊆ J ). To characterize the size of
the ALP, we define the relative reduction coefficient:

α = (1 −
number of ADPs

number of original DPs
)100%. (11)

Thus, the unaggregated problem has the value of α = 0%. The conventional approach is to aggregate
the original location problem only once before the solving process starts. Such aggregation is inevitably
associated with the aggregation errors. The adaptive aggregation framework integrates the aggregation
method, elimination of source errors and the solving algorithm and it is based on the iterative process solving
the ALP and adjusting it in order to achieve more accurate solution in the next iteration. To minimise the
aggregation errors, the crucial task is to identify ADPs that if disaggregated affect the positions of located
facilities and ADPs that include DPs that are allocated to incorrect facilities and to lower the level of the
aggregation in their surrounding. Thus, the adaptive aggregation framework leads to the irregular level of the
aggregation across the space, while the data are aggregated less in areas that may lead to aggregation errors.
To the best of our knowledge, this is the first attempt to present integrated framework for location-allocation
problems that iteratively adapts granularity of the aggregated location problem.
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3.1. Algorithm

The main idea behind the adaptive aggregation framework is to adjust the local level of data aggregation
to the results of optimization. To do so, we use the iteration mechanism, while embedding into it the
conventional optimization algorithm, the re-aggregation and (optionally) also the elimination of source
errors. Thus, the adaptive aggregation framework can be considered as novel type of solving approach or as
an aggregation method.

Figure 1 describes the phases of the adaptive aggregation framework and visualizes the associated data
and work flows. Phases 0,2,4,5 and 6 form the core of the adaptive aggregation framework. Phases 1 and
3 extend the adaptive aggregation framework by the elimination of sources errors A, B, C and D. Iterative
elimination of source errors C and D resembles the ALA heuristic (Cooper, 1964, 1972), however, phase 3
is performed only once in each iteration. For the description of all source errors and methods to eliminate
them, see Table 1. Examples illustrating source errors are available in the supplementary information file.

The notation used to describe the concept of the adaptive aggregation framework is summarised in Ta-
ble 2. The adaptive aggregation framework is applied to the original location problem and it starts with
phase 0, where OLP is aggregated to the problem ALP1 of computable size α̂1. To prepare the initial ALP,
we use the row-column aggregation method (Andersson et al., 1998), which is able to capture the population
clusters, and directly it eliminates UD and RA sources of errors (see Table 1). To improve the performance
of the row-column aggregation method, we apply it separately to individual municipalities to consider better
the population clusters present in the geographical area. After accomplishing phase 0, the adaptive aggrega-
tion framework continues executing the main iteration loop. The inputs to each iteration round i are OLP
and ALPi. The proposed framework iterates over the phases identifying the source errors, re-aggregating
the data and running the optimization solver. The information needed to target the adaptive aggregation of
the problem ALPi is collected in phases 2-5. To solve the basic instances of the location-allocation problem
that are typically significantly smaller than OLP, we use either a specialized solver or a general purpose
optimizer. Phase 6 re-aggregates ALPi to prepare it for the next iteration i + 1. The algorithm of the
adaptive aggregation framework is as follows:

Phase 0: Initialization

Set i = 1, aggregate the OLP to the aggregated problem ALP1 of size corresponding to the reduction coef-
ficient α1.
Phase 1: Elimination of source A and B errors

Update the distance matrix corresponding to ALPi accounting for source A and B errors (see Table 1).
Phase 2: Location of facilities

Solve the location problem ALPi using the algorithm Â p. We derive solution of the OLP by considering p̂

located facilities from the ALPi solution and DPs are assigned to the facilities the same way as their ADP
centroids in the ALPi solution.
Phase 3: Elimination of source C and D errors

Eliminate the source C error by reallocating DPs to the most suitable facilities (see Table 1) and update
the OLP solution. In addition, minimise the source D error by decomposing the problem into p̂ location
subproblems, each consisting of one located facility and of all associated DPs according to the OLP solution.
For each decomposed problem locate a single facility using the algorithm Â 1. As a result, p̂ newly located
facilities are obtained.
Phase 4: Identification of ADPs located in the central area of service zones

Set A = ∅ and B = ∅. Considering ADPs in ALPi, process all ADPs and if distance from ADP to the closest
facility is less or equal than ǫ̂, then insert ADP into the set A, otherwise insert ADP into the set B.
Phase 5: Identification of ADPs that if disaggregated may affect the positions of located fa-

cilities

Move from the set B into the set A all ADPs that could influence the positions of located facilities. This
step needs to be adjusted to the specific location-allocation problem. To see some examples please refer to
sections 4.3 and 4.4.
Phase 6: Re-aggregation

Update the best found OLP solution. If every facility is established in an ADP that cannot be further
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Table 2: Notation used to describe the adaptive aggregation framework. We add symbol ˆ to distinguish the quantities
representing the input parameters from the quantities characterizing the execution of the adaptive aggregation framework.

Symbol Description
i Iteration counter.

ilast Index of the last iteration.

îmax Input parameter determining the upper bound for the number of
iterations.

αi Value of the relative reduction coefficient corresponding to the
solved aggregated problem in the iteration i.

α̂max Input parameter (the value of the relative reduction coefficient)
determining the maximum size of the aggregated problem.

α̂1 Input parameter (the value of the relative reduction coefficient)
determining the aggregation level for the initially aggregated
problem.

ǫ̂ Input parameter defining the radius of the circular neighbourhood
of an ADP. This parameter separates the set K of all ADPs into
two disjoint subsets A,B ⊆ K, thus A ∩ B = ∅ and A ∪ B = K.
Subset A includes all ADPs that are located at a distance less or
equal than ǫ̂ from the closest facility. Subset B is then determined
as B = K − A. Thus, if ǫ̂ = 0, then A includes only ADPs with
located facilities.

λ̂ Input parameter defining the maximum number of newly created
ADPs when de-aggregating an ADP.

p̂ Number of the facilities to be located.

Â p Input parameter that determines the exact or heuristic algorithm
for locating p̂ facilities.

Â 1 Input parameter specifying the exact or heuristic algorithm for
locating a single facility.

de-aggregated or if i > imax then terminate. Output the best found solution as the final result. Otherwise,
increment i by 1 and de-aggregate each ADP in the set A to at maximum λ new ADPs using an aggregation
method. If α(i) > αmax, then terminate otherwise go to phase 1.

The iteration loop starts with phase 1 by eliminating the source errors A and B. Phase 1 leads to changes
in the distance matrix associated with ALPi. Further, in the phase 2, p̂ facilities are located by solving
ALPi using the algorithm Â p.

When the facility locations are known, in phase 3 source C errors are eliminated by re-allocating affected
DPs to the most suitable facilities. In addition, this phase minimises the source D error by decomposing the
problem into p̂ location subproblems, each consisting of one located facility and of all associated DPs. The
algorithm Â 1 is applied to each subproblem, to find more efficient location of a facility considering DPs
instead of ADPs. As a result, we obtain p̂ newly located facilities. The elimination of the source C errors is
applied again taking into account positions of newly located facilities.

Finally, in phases 4 and 5, ADPs that may have an impact on the accuracy of the location of facilities
are identified. We aim to dis-aggregate ADPs situated in the close vicinity of the located facilities to ensure
more accurate positioning of facilities. Therefore, the phase 4 extracts the subset A of ADPs∈ K, that
are located in the central area of service zones, having the distance to the closest facility smaller or equal
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Figure 1: Flowchart of the adaptive aggregation framework. Phases produce outputs (displayed on the right from the vertical
dashed line) that are later used as inputs by the follow up phases. The parameters and inputs are listed within the hexagonal
boxes representing phases. Phases 0, 2, 4, 5 and 6 are highlighted as they form the core parts of the adaptive aggregation
framework.
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than value ǫ̂. Furthermore, we define the set B = K − A. Phase 5 aims to identify ADPs in the subset B
that could influence the positions of the located facilities, and they are moved to the set A. The factors
influencing positions of such ADPs are dependent on the particular type of the location-allocation problem,
hence, phase 5 has to be specified separately for each problem.

In the phase 6, the best found solution for the OLP is updated. Then each ADP in the set A is re-
aggregated to maximum λ̂ new ADPs, using an aggregation method (we applied the row-column aggregation

method (Andersson et al., 1998) in this paper). The parameter λ̂ ensures that the size of the aggregated
problem does not grow too fast. The framework runs until it reaches the predefined number of iterations îmax,
the aggregation level of the problem αi+1 exceeds the predefined threshold α̂max, or the aggregated problem
has not changed since the last iteration. In Figure 2, we use small example to illustrate the application of the
adaptive aggregation framework to the p-median problem with p̂ = 2. The original location problem consists
of 199 demand points (see Figure 2a) and is reduced to 11 aggregated demand points, hence, α̂1 = 94.5% (see
panel (b) of Figure 2). Panels (c)-(f) of Figure 2 visualize the output of the adaptive aggregation framework
after executing the first four iterations, i.e. until no further change in the aggregated location problem is
detected. Please note that when the algorithm terminates, the density of ADPs is higher in the close vicinity
of located facilities and in border areas that are served from different facilities. This illustrates that the
adaptive aggregation framework is able to locally suit the data aggregation to the resulting solution.

4. Results

In this section we describe computational experiments and discuss the results and our findings. Sub-
section 4.1 details the design of benchmarks and basic organization of experiments. In order to study the
relevance of the particular phases, we proposed several versions of the adaptive aggregation framework as
described in the subsection 4.2. Subsections 4.3 and 4.4 are devoted to the application of the adaptive
aggregation framework to the p-median problem and to the lexicographic minimax problem, respectively.

4.1. Benchmarks

The benchmarks are prepared using a large amount of GIS data covering the geographical area of the
Slovakia. What is a suitable approach to determine the set of customer locations depends on the application.
Here, we utilize the dataset that we used previously to study the design and efficiency of public service
systems such as networks of hospitals, schools or medical emergency centres (Cebecauer et al., 2016). All
details regarding the data and the processing procedure are given in Cebecauer and Buzna (2017). To
construct the dataset, freely available geographical data originating from the OpenStreetMap are used.
Furthermore, data layers describing the positions of buildings, roads, residential, commercial and industrial
areas are considered to estimate the spatial distribution of customers that are modelled by the set of DPs.
The dataset is composed of the graph G(V , E) representing the Slovak road network and of the set J of DPs
characterized by the weights wj derived from the residential population data (Batista e Silva et al., 2013).
The graph includes 2 080 694 edges and 1 956 067 nodes, out of which 663 203 are considered as DPs. The
average area representing one DP in dense urban areas is about 0.01 km2 and the average distance between
the closest DPs is approximately 0.1 km. Figure 3 shows the choropleth map of Slovakia and the border
lines of geographical areas that constitute our benchmarks.

To evaluate the proposed approach, three classes of benchmarks that differ in the problem size are used.
The first class is used to compare the objective value and time consumption with the exact or high quality
methods. The main purpose of these benchmarks is to evaluate how far the adaptive aggregation framework
can deviate from the optimal solution. Thus, problems are small enough to be computable to optimality
and the distance matrix can be easily stored in the computer memory. For this purpose we created the
benchmarks Partizánske and Košice (see Table 3), where all distances are calculated in advance to the solving
process. Please note that the size of these problems is in the location analysis already considered as large.
In addition, two standard benchmarks d2103 and pcb3038 with 2 103 and 3 038 DPs, used in Garćıa et al.
(2011), are considered to demonstrate the universality and independence of results on datesets generated
in Cebecauer and Buzna (2017). Please note that for these benchmarks the coordinate system is unknown,
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(a) (b)

(c) iteration 1 (d) iteration 2

(e) iteration 3 (f) iteration 4

DP and the boundary

ADP centroid and the boundary

Located facility

Allocation of the ADP to the located facility

DPs having different facility 

allocated than their ADP centroid 

Road network

DP connector to the road network

Figure 2: Re-organizations of the aggregated location problem within individual iterations of the adaptive aggregation frame-
work when it is applied to the p-median problem for p̂ = 2. (a) Demand points that constitute the original location problem
and the underlying road network forming the geometric graph G(V , E) (for clarity the network is not shown in other panels).
(b) Aggregated location problem produced by the row-column aggregation method in the phase 0 of the adaptive aggregation
framework. (c)-(f) Aggregated location problem after each of the first four iterations of the adaptive aggregation framework.
Source errors D are minimised as the close neighbourhood of the located facilities becomes disaggregated to larger degree than
other areas. Areas of demand points filled with the colour visualise all demand points that are incorrectly assigned to facilities
due to the aggregation (source error C). These areas are eliminated within the first two iterations of the adaptive aggregation
framework.
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Table 3: Basic information about the geographical areas that constitute our benchmarks. The number of DPs is equal to the
size of sets I and J and thus determines the size of solved problems.

Benchmark
Number Area

Population
of DPs [km2]

Partizánske 4 873 301 47 801
Košice 9 562 240 235 251
Žilina 79 612 6 809 690 420

Slovakia 663 203 49 035 5 418 561

and therefore, it is hard associate values of the parameter ǫ with some meaning. Furthermore, the Euclidian
distances between demand points have to used instead of the road network distances.

The second class concerns the benchmark Žilina (see Table 3) that covers more than 300 municipalities
in the region of Žilina. The number of DPs considered in the benchmark Žilina is similar to the maximal
number that we found in the literature to be solved in the context of the p-median problem without the
use of any aggregation method (Garćıa et al., 2011; Avella et al., 2012). Problems of this size are usually
computable only for very small or large enough value of the parameter p̂. Another difficulty is that the matrix
of the shortest path distances is exceedingly large, and thus it is problematic to store it in the computer
memory. Therefore, some authors use Euclidean distances instead (Garćıa et al., 2011). They are easy
to calculate from geographical coordinates whenever they are needed. Here, another approach is applied.
Although it is challenging, the size of the benchmark Žilina makes it still possible to repeatedly calculate
the shortest path lengths from the graph of the road network. Therefore, we do not store distances in the
memory but calculate them whenever they are needed to be known. This approach allows for quantifying
the contributions of the individual phases of the adaptive aggregation framework on the quality of the final
solution, while the level of aggregation is changing.

The third class is represented by the exceedingly large benchmark Slovakia covering the entire generated
dataset (see Table 3) reaching 663 204 DPs. This benchmark significantly exceeds the capabilities of current
exact and also many heuristic methods. Our aim is to quantify the effect of the adaptive aggregation
framework when it is applied to extremely large problems where the level of the used aggregation is typically
high.

Repeated computations of the shortest path lengths consume non-negligible time, and because we applied
a different approach to the calculation of distances, dependent on the size of problems, it is difficult to
compare computational times across the different problem sizes. However, please note that location problems
are typically conceived as strategic decision problems, and thus computational time, while being within the
reasonable limits, is not the most sensitive issue. All the benchmarks are available for download from
the web site http://frdsa.uniza.sk/~buzna/page5/page5.html and to facilitate the reproducibility of
results, the description of data has been turned to a short data paper Cebecauer and Buzna (2017).

4.2. Versions of the adaptive aggregation framework

The purpose of computational experiments is to evaluate the adaptive aggregation framework and to
investigate the importance of the elimination of source errors (phases 1 and 3) and the importance of
customizing the selection of ADPs that are further re-aggregated (phase 5) to the particular type of the
problem. Therefore, we have created three versions V1, V2 and V3 that are characterized by the absence of
some phases. For overview please refer to the Table 4.

Versions V1 and V2 both omit phases 1 and 3 that eliminate A, B, C and D source errors. Thus, these
two versions represent the core of the adaptive aggregation framework. By comparing V1 and V2, we may
quantify the effect of the phase 5 that is not present in the version V1. When phase 5 is omitted, more DPs
remain incorrectly assigned to located facilities, however, some computational time is saved, and the value
of the reduction coefficient αi remains higher for longer time.

Version V3 is a reference version that extends the adaptive aggregation framework by elimination of
source errors A, B, C and D. Elimination of source errors is computationally very expensive for large
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Figure 3: Choropleth maps of the selected areas that belong to our benchmarks. The colours indicate the residential population
associated with the Voronoi polygons derived from the positions of DPs. (a) Map of Slovakia with highlighted borders of the
areas that constitute our benchmarks. (b) Benchmark Košice. (c) Zoomed area of benchmark Košice illustrating the level of
details that we considered across the entire area of Slovakia.
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Table 4: Versions of the adaptive aggregation heuristic. We use the symbol ”+” to denote the presence of phases. The
versions of the framework were designed to evaluate the importance of the elimination of source errors (phases 1 and 3) and
the importance of customizing the selection of ADPs to the particular type of the problem (phase 5).

Version Phases 1 and 3 Phase 5
V1
V2 +
V3 + +

location problems such as Žilina and Slovakia. Phases 0, 2, 4 and 6 are the integral parts of the framework
and therefore we do not present results when experimenting with their removal. Preliminary experiments
have shown that the missing combination of the removed phases in table 4 does not lead to significant effects.

4.3. Application to the p-median problem

Before applying the proposed adaptive aggregation framework, to achieve higher performance, the phase
5 has to be adjusted to the p-median problem. Here, ADPs that may erroneously (due to source errors
C and D) affect the optimal location of facilities are located in the boundary area of service zones. Such
ADPs are likely to be composed of DPs that should be allocated to other facilities than a given ADP, and
thus their demand is incorrectly distributed among the facilities. This way, ADPs located in the boundary
areas of facilities affect the set of the locations found in the phase 2. Therefore, we adjusted the phase 5 of
the framework to identify ADPs in the boundary areas of the service zones as the candidate ADPs for the
re-aggregation:

Phase 5: Identify ADPs that if disaggregated may affect the positions of located facilities.
Process the set B and move an ADP to the set A if it includes at least one DP that has shorter distance

to another facility than its ADP centroid.

To solve the p-median problem in the phase 2, we use as the parameter Â p the state-of-the-art algorithm
ZEBRA (Garćıa et al., 2011). In the phase 3, to minimise the source D errors, we use as the parameter Â 1
the enumeration algorithm to solve the 1-median problem. The results of preliminary experiments with the
early version of the adaptive approach applied to the p-median problem were presented in the conference
contribution Cebecauer and Buzna (2015).

4.3.1. Performance evaluation

To quantify the performance, we adopt the indicators described in Erkut and Neuman (1992) and we
formalize the relative error Φ as:

Φ(αI , αII) =
f(xαII ,yαII )− f(xαI ,yαI )

f(xαI ,yαI )
100%, (12)

where (xα,yα) is the optimal solution to the problem that has been aggregated to the level of α and
f(xα,yα) is the corresponding objective function value evaluated with respected to the unaggregated prob-
lem (OLP). If αI = 0% in the equation (12), then the optimality error (Erkut and Neuman, 1992), often
called the relative gap, is recovered.

Using the same notation, we define the relative time efficiency τ as:

τ(αI , αII) =
t(xαII ,yαII )− t(xαI ,yαI )

t(xαI ,yαI )
100%, (13)

where t(x,y) is the time spent by computing the solution (x,y).

15



Table 5: Results of the numerical experiments for the p-median problem and the benchmark Košice. The symbol αilast
denotes

the value of the reduction coefficient after the last iteration ilast of the framework. Values Φ(0, αilast
) and τ(0, αilast

) are
calculated by contrasting solutions with the optimal solution found by the algorithm ZEBRA.

[km] [%] Indicator
p̂ = 10 p̂ = 20 p̂ = 40

V1 V2 V3 V1 V2 V3 V1 V2 V3

ǫ̂ = 0

α̂1 = 99

ilast 7 13 19 11 9 14 14 21 16
αilast

[%] 97.8 91.8 91.6 96.3 89.0 87.2 92.7 82.3 84.0
Φ(0, αilast

)[%] 4.025 2.155 0.099 2.539 2.02 0.177 3.252 1.177 0.018
τ(0, αilast

)[%] -99.9 -98.4 -91.1 -99.8 -98.3 -91.5 -97.5 -66.5 -63.2

α̂1 = 90

ilast 12 12 12 6 9 8 6 12 16
αilast

[%] 87.6 87.5 86.8 89.0 84.6 85.5 88.0 81.8 80.4
Φ(0, αilast

)[%] 1.167 1.167 0.005 1.592 0.801 0 2.364 2.151 0.035
τ(0, αilast

)[%] -96.8 -96.7 -89.2 -99.1 -96.3 -93.7 -97.2 -78.5 -44.5

α̂1 = 75

ilast 4 6 7 5 6 7 4 10 4
αilast

[%] 74.9 73.9 73.9 74.6 72.5 72.4 74.1 71.0 70.7
Φ(0, αilast

)[%] 0.093 0.033 0 1.004 0.74 0 1.298 1.198 0.191
τ(0, αilast

)[%] -96.5 -94.7 -81 -93.2 -92.2 -82.1 -88.8 -63.1 -12.2

ǫ̂ = 1

α̂1 = 99

ilast 16 16 14 11 16 13 11 17 9
αilast

[%] 71.2 71.1 70.9 63.2 57.4 57.6 50.4 44.5 44.6
Φ(0, αilast

)[%] 0.008 0.008 0 0.359 0.186 0.036 0.089 0.023 0.014
τ(0, αilast

)[%] -85.7 -83.3 -64.6 -84.7 -56.7 -45.5 -27.7 106.7 196.8

α̂1 = 90

ilast 12 12 12 9 12 12 8 18 8
αilast

[%] 68.8 68.9 69.3 59.0 55.4 57.8 48.0 43.0 43.7
Φ(0, αilast

)[%] 0.004 0.004 0 0.229 0.19 0.15 0.079 0.02 0
τ(0, αilast

)[%] -84.7 -78.3 -51.2 -72.7 -51 -29 -32 239.3 342.9

α̂1 = 75

ilast 6 8 8 7 13 13 7 14 7
αilast

[%] 63.8 62.0 61.9 53.5 50.9 52.1 44.2 41.5 42.2
Φ(0, αilast

)[%] 0.009 0.009 0 0.003 0.003 0 0.024 0.02 0.014
τ(0, αilast

)[%] -86.1 -82.6 -57.9 -65.6 -39.9 -11.5 -25.7 102.3 127.4

ǫ̂ = 2

α̂1 = 99

ilast 19 16 11 19 18 11 18 18 18
αilast

[%] 47.9 44.7 44.8 33.9 31.1 31.4 24.2 20.2 22.1
Φ(0, αilast

)[%] 0.008 0 0 0.039 0.039 0 0.032 0 0
τ(0, αilast

)[%] -26.1 -24.1 23.7 -25.3 79 110 146.3 473.4 563.6

α̂1 = 90

ilast 10 12 12 10 18 16 10 15 15
αilast

[%] 46.8 44.0 44.1 33.0 29.3 29.7 23.1 21.0 21.6
Φ(0, αilast

)[%] 0 0 0 0.036 0 0 0.011 0 0
τ(0, αilast

)[%] -54.3 -24.4 18.3 -13.9 109.4 99.6 187.7 392.7 459.5

α̂1 = 75

ilast 7 17 17 8 17 18 10 17 17
αilast

[%] 42.2 40.5 41.1 29.5 27.9 27.8 21.0 19.2 20.0
Φ(0, αilast

)[%] 0 0 0 0.004 0.004 0 0.004 0 0
τ(0, αilast

)[%] -54.4 45.1 151 7.6 98 171.8 285.7 555.7 699.6

4.3.2. Benchmark Košice.

The aim of this section is to evaluate the ability of the adaptive aggregation framework to find high-
quality solutions by comparing it to the exact algorithm ZEBRA and to evaluate the effects of selected
phases. In addition, we study how the initial level of the problem aggregation (α̂1), the number of located
facilities (p̂) and the radius determining the disaggregated area (ǫ̂) influence the optimality error and the
time effectiveness. Benchmark Košice ,as well as, the benchmarks d2103 and pcb3038 can be solved to
optimality and therefore there is no need to limit the number of iterations and we set α̂max = 0% and
îmax = ∞. Thus, the framework terminates when the solved problem stops changing.
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We present values of the performance indicators Φ(0, αilast
) and τ(0, αilast

) in Table 5. Except the cases
when we limit the size of the re-aggregated area in phase 4 by setting ǫ̂ = 0, the optimality error Φ(0, αilast

)
is below 1%. Setting ǫ̂ = 2 significantly increases the quality of solutions and increases the chances to find
the optimal solution. For instance, version V2 provides optimal solutions in 77% of cases when ǫ̂ = 2 and no
optimal solution for ǫ̂ = 1 and ǫ̂ = 0. This indicates that the quality of the resulting solution is improved,
when we re-aggregated not only ADPs where the facilities are located (ǫ̂ = 0), but also ADPs located in
their close neighbourhood.

As expected full version of the framework (V3) provides the best quality of solutions. It finds the optimal
solution in all cases when parameter ǫ̂ = 2, in 55% of cases for ǫ̂ = 1 and in 33% of cases if ǫ̂ = 0. By
removing the phases 1, 3 and 5 the quality of the solutions quickly deteriorates. The version V1 finds the
optimal solution only in 22% of cases for ǫ̂ = 2 and it fails to find any optimal solution when setting ǫ̂ = 1
and ǫ̂ = 0. The comparison between V1 and V2 reveals that phase 5 improves the quality of solutions, and
it thus partially compensates for phase 4, especially when ǫ̂ = 0.

The version V1 is the most time efficient, and it leads to the lowest number of iterations and to the
largest reduction coefficient αilast

. The most time consuming is the version V3. The time efficiency of
V2 closely resembles V3, and it is smaller than V1, which implies that the elimination of source errors in
phases 1 and 3 is more time consuming than phase 5. The elimination of source errors and phase 5 take less
computational time when the number of located facilities p̂ is small. Consequently, the adaptive aggregation
framework has higher time efficiency τ(0, αilast

), when p̂ is small. This is particularly beneficial as the
algorithm ZEBRA systematically consumes more computational time and computer memory for smaller
values of the parameter p̂.

To summarise, the experiments with the benchmark Košice showed that the adaptive aggregation frame-
work is able to find a high quality solutions. For small values of p̂, it can even find the optimal solution while
saving some computational time when compared to the exact algorithm ZEBRA (see the cells in Table 5
where Φ(0, αilast

) = 0 and τ(0, αilast
) is negative). We conducted similar numerical experiments with the

benchmarks Partizánske, d2103 and pcb3038 that further support our conclusions (see Tables S1, S2 and
S3 in the supplementary information file).

4.3.3. Benchmark Žilina

The benchmark Žilina is too large to be solved to optimality by the algorithm ZEBRA. To ensure that
the aggregated problem can be solved in phase 2, α̂max is set to 70%. The computational time is limited
to 12 days to execute several iterations of the framework. Due to the size of the benchmark Žilina, it is
impossible to evaluate the optimality error Φ(0, αilast

). In the location analyses DPs are often considered
as geographically large areas, e.g. the individual municipalities (Yun et al., 2015; Romero et al., 2016;
Janáček et al., 2012; Buzna et al., 2014; McLay and Moore, 2012). Here, we use the problem aggregated to
the level of 314 municipalities as a basic reference case to evaluate the quality of solutions. This problem
is also used to initialize the adaptive aggregation framework, i.e. α̂1 = 99.6%. As a second reference case
we use the problem that was aggregated by the row-column aggregation method (Andersson et al., 1998) to
23 833 ADPs, corresponding to α = 70%. Projecting the numbers of emergency services centres operated
in Slovakia (113 fire brigades, 273 ambulances, 405 police stations and 1 500 post offices) proportionally to
the population of the region of Žilina, we obtained the following values of the parameter p̂: 10, 35, 50 and
190. To solve such computationally demanding problems efficiently, we used the computer cluster. Table 6
summarises our results.

In comparison to the problem aggregated to the level of municipalities, the adaptive aggregation frame-
work enables to lower the objective function by 8% to 45%. The reduction grows with the parameter p̂.
The framework provides similar quality of solutions than the exact algorithm ZEBRA when applied to the
aggregated problem with α = 70%. Here we should point out that the aggregation level is in the majority
of cases significantly higher than 70% (see values of αilast

).
The version V1 terminates with less aggregated problem, however, it provides solutions of very similar

quality to the version V3 while consuming significantly less computational time. As the number of located
facilities grows, the relative improvement in the solution quality grows as well. In other words, the relative
benefit of using less aggregated problem is larger when the service zones are small. This is beneficial when
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Table 6: Results of the numerical experiments for the p-median problem and the benchmark Žilina. The symbol αilast
denotes

the value of the reduction coefficient after the last iteration ilast of the adaptive aggregation framework that was successfully
completed before reaching the time limit of 12 days. The relative error Φ was evaluated with respect to the reference problems
aggregated to the level of α = 99.6% and α = 70%, respectively.

[km] Indicator
p̂ = 10 p̂ = 35 p̂ = 50 p̂ = 190

V1 V2 V3 V1 V2 V3 V1 V2 V3 V1 V2 V3

ǫ̂ = 0

ilast 6 8 3 8 10 4 8 10 5 10 13 6
αilast

[%] 98.9 84.6 95.2 98.5 82.3 90.8 98.3 81.3 86.1 96.1 76.9 78.5
Φ(99.6, αilast

)[%] -8.19 -8.32 -8.69 -15.8 -15.9 -16.3 -18.6 -19.0 -19.6 -43.9 -44.5 -45.4
Φ(70.0, αilast

)[%] 0.47 0.32 -0.07 0.68 0.51 0.01 1.17 0.69 -0.06 2.14 0.9 -0.62
t[h] 2.6 288 288 3.6 242.3 288 4.5 209.6 288 11.1 212.5 288

ǫ̂ = 1

ilast 9 7 3 13 8 5 11 9 5 9 5 5
αilast

[%] 97.4 82.8 94.9 93.3 76.8 82.9 92.1 75.2 81.4 75.6 70.0 70.0
Φ(99.6, αilast

)[%] -8.56 -8.66 -8.69 -16.1 -16.2 -16.4 -19.4 -19.5 -19.7 -45.2 -45.1 -45.4
Φ(70.0, αilast

)[%] 0.07 -0.05 -0.07 0.23 0.24 -0.13 0.19 0.13 -0.16 -0.28 -0.28 -0.74
t[h] 6.5 288 288 23.5 288 288 22.4 288 288 57.4 59.2 244.9

ǫ̂ = 2

ilast 10 6 3 11 6 4 13 5 4 5 4 5
αilast

[%] 93.0 80.2 94.1 82.9 70.0 84.4 79.5 70.0 82.7 70.0 70.0 70.0
Φ(99.6, αilast

)[%] -8.77 -8.76 -8.49 -16.4 -16.4 -16.4 -19.7 -19.6 -19.7 -45.0 -44.9 -45.4
Φ(70.0, αilast

)[%] -0.16 -0.15 -0.07 -0.10 -0.13 -0.13 -0.14 -0.02 -0.20 -0.01 0.18 -0.70
t[h] 35.8 288 118.1 76.0 240.7 204.2 131.5 114.6 193.1 33.0 39.0 269.2

dealing with extremely large problems. The version V2 provides solutions of quality and time effectiveness
between V1 and V3.

4.3.4. Benchmark Slovakia

The set of preliminary tests showed that the size of the benchmark Slovakia does not allow for the
elimination of source errors (phases 1 and 3) due to the demanding computation of the shortest path
distances dij . Therefore, we studied only versions V1 and V2. Please note that experiments with the
benchmark Žilina revealed that the versions V1 and V2 when applied to large aggregated problems provide
solutions of comparable quality to the version V3, so it is very likely that such enormous computational
effort would not pay off anyway.

The benchmark Slovakia is extremely large and cannot be solved to optimality and we again evaluate the
quality of the final solutions by comparing them with the optimal solution to two aggregated problems. The
first problem, where the benchmark is aggregated to 2 924 municipalities (α = 99.6%), and the second prob-
lem where we used the row-column aggregation method to create as large as possible benchmark comprising
of 39 792 DPs (α = 94%). The instances of this problem could still be solved within 12 days, using 64-bit
version of algorithm ZEBRA and 35 GB RAM memory. We set the value of parameter α̂max = 96.98%
(20 000 ADPs) and the number of the located facilities p̂ = 113, 273, 405 and 1 500. We limit the com-
putational time to 18 days and parameter α̂1 = 99.6%. Table 7 summarises the results of computational
experiments.

Not surprisingly, the computational time grows with the parameter p̂, resulting in smaller values of the
reduction coefficient αi. The adaptive aggregation framework improves the quality of the solution from 12
to 44% with respect to the optimal solution to the problem that is aggregated to the level of municipalities
(α = 99.6%). The gained improvements are also significant, ranging from 11% to 18%, when compared to
the problem that was aggregated to the maximum computable size (α = 94.0%). For example, for p̂ = 273
and ǫ̂ = 0 the version V1 of the adaptive aggregation framework reached Φ(94.0, 98.97) = −13.59%, while
using less than one fifth of ADPs. In absolute numbers, this improvement corresponds to 3 354 988 km,
when the solution is evaluated considering the unaggregated location problem. These results underline the
significant benefits of the adaptive aggregation framework.

Like in the case of the benchmark Žilina, the results confirmed that the parameter ǫ̂ > 0 does not effect
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Table 7: Results of the computational experiments obtained when applying the adaptive aggregation framework to the bench-
mark Slovakia and the p-median problem. Symbol αilast

denotes the value of the reduction coefficient after the last iteration,
ilast, of the algorithm. We evaluate the relative error Φ with respect to the optimal solution to problems aggregated to the
levels of α = 99.6% and α = 94.0%, respectively.

[km] Indicator
p̂ = 113 p̂ = 273 p̂ = 405 p̂ = 1500

V1 V2 V1 V2 V1 V2 V1 V2

ǫ̂ = 0

ilast 9 3 12 3 10 3 6 3
αilast

[%] 99.32 96.98 98.97 96.98 98.65 96.98 96.98 96.98
Φ(99.6, αilast

)[%] -13.15 -12.36 -19.94 -18.87 -23.22 -21.95 -43.93 -40.99
Φ(94.0, αilast

)[%] -12.18 -11.39 -13.59 -12.44 -14.82 -13.40 -18.79 -14.52
t[h] 130.7 181.2 243.6 139.8 244.7 134.8 272.2 146.0

ǫ̂ = 1

ilast 9 3 6 3 6 3 5 3
αilast

[%] 97.74 96.98 96.98 96.98 96.98 96.98 96.98 96.98
Φ(99.6, αilast

)[%] -13.45 -12.40 -19.94 -18.87 -22.96 -21.97 -42.49 -41.03
Φ(94.0, αilast

)[%] -12.48 -11.43 -13.59 -12.44 -14.53 -13.43 -16.71 -14.59
t[h] 432 180.7 335.4 139.8 351.2 136.9 160.1 144.7

ǫ̂ = 2

ilast 6 3 6 3 4 3 3 3
αilast

[%] 96.98 96.98 97.29 96.98 97.29 96.98 96.98 96.98
Φ(99.6, αilast

)[%] -13.16 -12.46 -20.04 -18.91 -22.59 -22.06 -41.10 -41.09
Φ(94.0, αilast

)[%] -12.19 -11.49 -13.70 -12.48 -14.11 -13.53 -14.70 -14.68
t[h] 253.2 233.7 196.5 136.6 127.6 136.4 115.9 133.9

the quality of the solution so strongly. The values αilast
are similar independently on ǫ̂, thus, we conclude

that re-aggregation of ADPs, where facilities are located, is sufficient for very large benchmarks. The version
V1 provides in all cases larger improvements than the version V2, thus, it confirms that omitting phase 5 is
beneficial for very large p-median problems. Here, including the phase 5 can make αi exceeding the αmax

in just few iterations. It is typical for iterative heuristics that gains in the quality of the solution quickly
diminish with the number of iterations. However, it is important to find a suitable combination of input
parameters ǫ̂, α̂1 and λ̂ to ensure that the number of executed iterations is sufficient to fully exploit the
potential of the re-aggregation. To save some space, we report in the supplementary information file (see
Table S4) the results confirming that the number of the executed iterations seems to be a reasonable trade
off between the quality of solutions and the computational time.

To highlight the benefits of the adaptive aggregation framework when solving extensively large location
problems, we visualise in Figure 4 values Φ(99.6, αilast

) (triangles) from Table 7 obtained for the largest
benchmark Slovakia. We compare these results with values Φ(99.6, α2) corresponding to the exact solutions
obtained by the algorithm ZEBRA considering data aggregated to levels α2 = {94, 95, 96, 97, 98, 99}prepared
by the row-column aggregation method (circles). Values Φ(99.6, α2) clearly show that benefits of increasing
the size of the aggregated location problem are considerable and grow together with the number of located
facilities p̂. However, almost in all cases, the benefits of the adaptive aggregation framework are significantly
larger and these improvements were achieved on problems aggregated to higher level of αilast

.

4.4. Application to the lexicographic minimax problem

The lexicographic minimax approach interatively minimizes the maximum distance from DPs to the
closest facilities. Therefore, it is likely that DPs, that have larger distance to the closest facility than is the
distance from their ADP to the closest facility may cause aggregation errors. Therefore, to apply the adap-
tive aggregation framework to the lexicographic minimax problem, we customized phase 5 in the following
way:
Phase 5: Identify ADPs that if disaggregated may affect the positions of located facilities.

For each located facility f we define the distance dmax
f as the maximum distance between an ADP and the

assigned facility f . Then all ADPs that include at least one DP that has distance to the closest facility f

larger than dmax
f are moved from the subset B into the subset A.
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Figure 4: Comparison of the adaptive aggregation framework with the row-column aggregation method when applying them
to the p-median problem and large benchmark Slovakia. We visualise values of the relative change in the value of the ob-
jective function Φ(99.6, αilast

) obtained by the adaptive aggregation framework (triangles), where αilast
is the final level of

aggregation and values Φ(99.6, α2) obtained by the exact algorithm (circles), while aggregating the problem to the levels
α2 = {94, 95, 96, 97, 98, 99} using the row-column aggregation method. We use transparent symbols to facilitate identification
of overlaps.

To solve the lexicographic minimax problem in the phase 2, we use as the parameter Â p the approxi-
mative algorithm A-LEX (Buzna et al., 2014). In the phase 3, to minimise the source D errors, we use as
the parameter Â 1 the enumeration algorithm to solve the 1-centre problem. The lexicographic minimax
problem is computationally much more demanding than the p-median problem, therefore, we did not apply
the adaptive aggregation framework to the largest benchmark Slovakia.

4.4.1. Performance evaluation

To evaluate the lexicographic minimax problem is more complex than the p-median problem. We need
to quantify the degree of equity among all distances between DPs and the closest facilities and at the same
the proximity of located facilities to DPs should be assessed. To evaluate the degree of equity, we follow
the performance indicators used in Ogryczak (1997). The important aspect in the lexicographic minimax
approach is the minimisation of the maximal distance between a DP and its closest facility. Therefore, the
relative difference ΦMAX in maximal distances of two solutions is evaluated as follows:

ΦMAX(αI , αII) =
bMAX(xαII ,yαII )− bMAX(xαI ,yαI )

bMAX(xαI ,yαI )
100%, (14)

where bMAX(xα,yα) is the value of the maximum distance from an unaggregated DP to the closest
facility in the solution (xα,yα) to the problem aggregated to the level of α. Further, as an equity measure,
we define the relative difference ΦGINI between two solutions as:

ΦGINI(αI , αII) =
g(xαII ,yαII )− g(xαI ,yαI )

g(xαI ,yαI )
100%, (15)
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where g(xα,yα) is the value of the gini coefficient computed by taking all distances from unaggregated
DPs to their closest facilities. The gini coefficient is a measure of inequality (Ullah and Giles, 1998). Let bj
denote the distance from the customer j to the closest facility in the solution (xα,yα) and we denote 〈b〉 as
its mean. For the set {bj, j = 1, 2, . . . , n}, the gini coefficient g(xα,yα), can be estimated by a sample mean:

g(xα,yα) =

∑n
k=1

∑n
l=1|bk − bl|

2n2〈b〉
. (16)

4.4.2. Benchmark Košice

This section, in the same spirit as in the case of p-median problem, evaluates how the presence of phases
affects the time efficiency and the solution quality trade-off and the role of parameters α̂1 and ǫ̂. We compare
three values of α̂1: 99%, 90% and 75% and three values of ǫ̂: 0, 1 and 2 km. The benchmark Košice is
reasonably small, and thus we set α̂max = 0% and îmax = ∞ not to limit the number of iterations. The
values of the performance indicators are calculated by contrasting the values obtained with the adaptive
aggregation framework with the A-LEX algorithm.

Table 8 shows numerical results obtained for the benchmark Košice. If the values of the maximum
distance between the customer DP location and the closest located facility are not optimal, the quality of
the solution is strongly deteriorated. The version V1 has never reached the value ΦMAX(0, αilast

) = 0 and
versions V2 and V3 perform similarly, thus we conclude that phase 5 has stronger effect on the quality of the
solutions than in the case of the p-median problem, and it is more relevant than the elimination of source
errors. The values of the parameter ǫ̂ > 0 contribute to the higher quality of solutions, although the effect is
not so pronounced. The time efficiency lowers as the parameter values ǫ̂ and α̂1 are growing. Although, when
they are selected properly, the adaptive aggregation framework can find solutions having ΦMAX(0, αilast

) =
0% in shorter time than the algorithm A-LEX. We conducted similar numerical experiments with the
benchmark Partizánske that further support our conclusions (see Table S7 in the supplementary information
file). Results obtained on benchmarks d2103 and pcb3038, where the Euclidian distances are used (see Tables
S5 and S6 in the supplementary information file), show that consistently only the version V2 provides very
good results. Version V1 and occasionally also version V3 produce high values of ΦMAX(0, αilast

), indicating
low quality solutions. Thus, the results confirm that phase 5 plays an important role and elimination of
source errors may sometimes lead to even counterproductive effects. Independently on the way how the
distances are computed the results of numerical experiments on small problems show that the V2 is the
most reliable version of the algorithm when solving the lexicographic minimax location problem.

4.4.3. Benchmark Žilina

The experiments with smaller benchmark Košice already illustrated that the version V1 is not competitive
with V2 and V3 and therefore here we do not report the results for V1. The algorithm A-LEX is not able to
compute problems of this size, therefore, we evaluate the performance of the adaptive aggregation framework
by comparing it to the algorithm A-LEX on aggregated problems. Again, we use the problem aggregated
to the level of the individual municipalities α = 99.6% and the problem aggregated to α = 80.0% which
can be considered as very large but still computable with the algorithm A-LEX. We initiate the framework
by using the problem aggregated to the individual municipalities, and we set the maximum computational
time to 10 days and α̂max to 80%. We set the numbers of the located facilities to the same values as for
the p-median problem, hence, p̂ = 10, 35, 50 and 190. The results of the computational experiments are
summarised in Table 9.

In all the cases the adaptive aggregation framework provides significant improvements in the quality
of the solution as well as in the equity. The reduction of the maximum distance increases by growing the
number of the located facilities p̂, and it ranges from 3% to 50%. It is noteworthy that the reduction with
respect to the problem reduced to the level of municipalities leads to the values of ΦMAX ranging from
38% to 80%. In absolute values, the adaptive aggregation framework for p̂ = 190 reduces the maximum
distance about 22 km compared to the solution obtained by the algorithm A-LEX on the problem reduced
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Table 8: Results of the numerical experiments after applying the adaptive aggregation framework to the lexicographic minimax
problem and benchmark Košice. The symbol αilast

denotes the value of the reduction coefficient after the last iteration ilast
of the framework. We evaluate the relative difference in maximal distances ΦMAX , the relative difference in gini coefficients
ΦGINI and the relative time efficiency τ .

[km] [%] Indicator
p̂ = 10 p̂ = 20 p̂ = 40

V1 V2 V3 V1 V2 V3 V1 V2 V3

ǫ̂ = 0

α̂1 = 99

ilast 7 22 14 10 14 14 13 18 21
αilast

[%] 97.8 92.3 91.7 96.0 86.7 85.8 92.6 78.1 78.0
ΦMAX(0, αilast

)[%] 137.1 11.29 11.29 227.5 5 0 137.93 0 0
ΦGINI(0, αilast

)[%] 21.58 1.87 4 5.27 -3.9 -3.82 7.59 0.52 0.08
τ(0, αilast

)[%] -99.88 -96.11 -94 -98.09 -79.03 -66.09 -98.22 -55.58 -47.82

α̂1 = 90

ilast 5 24 23 6 18 19 5 18 16
αilast

[%] 89.3 87.1 87.3 88.7 84.0 83.6 86.9 76.7 75.9
ΦMAX(0, αilast

)[%] 16.13 1.61 0 25 2.5 0 37.93 0 0
ΦGINI(0, αilast

)[%] 4.12 0.08 -0.27 -4.94 -1.31 1.23 3.3 -0.12 -0.6
τ(0, αilast

)[%] -98.4 -91.4 -89.27 -95.3 -65.05 -56.99 -95.22 -57.97 -61

α̂1 = 75

ilast 4 11 14 5 12 12 8 14 14
αilast

[%] 74.5 72.7 72.4 73.7 70.6 70.1 70.1 66.3 66.0
ΦMAX(0, αilast

)[%] 3.23 0 0 5 2.5 0 20.69 0 0
ΦGINI(0, αilast

)[%] 0.88 -0.04 -0.23 -0.72 -2.43 -3.15 0.91 0.24 -0.99
τ(0, αilast

)[%] -90.58 -46.83 -42.91 -65.75 29.59 16.24 -70.71 4.23 -6.46

ǫ̂ = 1

α̂1 = 99

ilast 11 18 15 12 20 18 10 21 23
αilast

[%] 87.3 76.6 78.6 74.8 55.6 61.9 50.3 30.6 32.0
ΦMAX(0, αilast

)[%] 138.71 0 0 100 0 0 162.07 0 0
ΦGINI(0,αi

last
)[%] 21.65 -0.04 -4.88 4.94 -2.35 -1.79 4.06 0.68 -1.03

τ(0, αilast
)[%] -99.08 -79.26 -85.5 -77.59 197.08 47.1 -49.89 396.2 468.39

α̂1 = 90

ilast 8 25 22 9 17 16 10 17 17
αilast

[%] 78.0 72.5 73.9 70.5 61.4 62.3 40.8 32.1 32.5
ΦMAX(0, αilast

)[%] 17.74 0 0 2.5 0 0 41.38 0 0
ΦGINI(0, αilast

)[%] 6.52 -0.04 -1.18 -4.46 -2.51 -2.51 2.9 1.75 -1.11
τ(0, αilast

)[%] -85.77 -64.31 -73.35 -69 8.82 5.13 24.83 213.61 256.57

α̂1 = 75

ilast 8 12 12 7 18 25 12 10 18
αilast

[%] 63.4 61.2 62.1 55.1 46.8 48.8 28.1 27.7 26.9
ΦMAX(0, αilast

)[%] 8.06 0 0 5 0 0 20.69 0 0
ΦGINI(0, αilast

)[%] 0.04 -0.04 -0.34 -3.19 0 -0.52 1.15 0.68 -0.99
τ(0, αilast

)[%] -62.4 5.5 -1.32 23.55 365.18 592.25 258.67 208.19 471.98

ǫ̂ = 2

α̂1 = 99

ilast 11 27 22 12 12 14 10 17 11
αilast

[%] 52.8 46.6 48.9 19.6 13.5 16.1 2.6 1.3 2.7
ΦMAX(0, αilast

)[%] 74.19 0 0 15 0 0 10.34 0 0
ΦGINI(0, αilast

)[%] 15.97 0 -0.27 -7.57 -0.12 -0.68 -0.36 0.28 -1.03
τ(0, αilast

)[%] -73.45 247.74 130.59 400.44 514.26 763.7 429.08 782.4 418.05

α̂1 = 90

ilast 9 13 16 10 8 11 16 16 9
αilast

[%] 48.5 41.8 42.9 22.7 16.8 17.6 2.1 1.2 2.3
ΦMAX(0, αilast

)[%] 9.68 0 0 7.5 0 0 10.34 0 0
ΦGINI(0, αilast

)[%] 3.32 0 -1.18 -4.98 0 -0.72 0.76 1.27 0.83
τ(0, αilast

)[%] -44.16 177.59 265.71 302.45 546.8 806 851.81 785.86 868.9

α̂1 = 75

ilast 8 14 10 8 14 14 6 7 7
αilast

[%] 43.7 41.7 43.1 16.5 15.5 17.4 3.4 5.5 3.8
ΦMAX(0, αilast

)[%] 8.06 0 0 7.5 0 0 10.34 0 0
ΦGINI(0, αilast

)[%] -0.23 -0.19 -1.18 -4.46 0 -0.68 1.23 0.48 -0.99
τ(0, αilast

)[%] -21.94 202 88.36 412.75 697.95 851.46 2587.43 158.19 653.93
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Table 9: Results of the numerical experiments after applying the adaptive aggregation framework to the benchmark Žilina. By
the symbol αilast

we denote the aggregation level after accomplishing the last iteration ilast of the framework. We evaluate
the relative difference in maximal distances ΦMAX , the relative difference in gini coefficients ΦGINI and the computational
time t.

[km] Indicator
p̂ = 10 p̂ = 35 p̂ = 50 p̂ = 190

V2 V3 V2 V3 V2 V3 V2 V3

ǫ̂ = 0

ilast 15 9 14 8 10 8 8 7
αilast

[%] 98.35 98.29 95.81 95.18 94.93 95.18 87.23 87.11
ΦMAX(99.6%, αilast

)[%] -38.68 -39.12 -62.24 -62.24 -68.37 -68.62 -78.72 -79.79
ΦGINI(99.6%, αilast

)[%] -22.90 -21.46 -21.16 -20.90 -26.52 -25.77 -27.27 -27.43
ΦMAX(80.0%, αilast

)[%] -3.46 -4.15 -26.00 -26.50 -12.68 -13.38 -48.28 -50.86
ΦGINI(80.0%, αilast

)[%] -1.21 0.62 0.69 1.02 1.60 2.65 -0.35 -0.57
t[h] 13.8 240.0 32.1 240.0 22.49 240.0 48.0 240.0

ǫ̂ = 1

ilast 23 9 16 6 12 6 5 5
αilast[%] 96.77 97.16 90.20 95.64 87.81 94.54 80.00 80.00

ΦMAX(99.6%, αilast
)[%] -39.12 -39.12 -62.24 -60.97 -68.62 -68.37 -79.08 -80.14

ΦGINI(99.6%, αilast
)[%] -21.41 -21.49 -21.87 -20.71 -25.88 -26.74 -27.71 -27.61

ΦMAX(80.0%, αilast
)[%] -4.15 -4.15 -26.00 -23.00 -13.38 -12.68 -49.14 -51.76

ΦGINI(80.0%, αilast
)[%] 0.70 0.59 -0.22 1.27 2.50 1.30 -0.96 -0.82

t[h] 29.76 240.0 83.17 240 68.75 240 36.4 176.5

to α = 99.6%. With respect to the problem reduced to α = 80.0% the maximum distance is reduced about
6 km. Strongly affected are not only the maximum distances, but all other distances.

The values of indicators ΦMAX and ΦGINI for the lexicographic minimax problem are often higher
than indicator Φ for the p-median problem suggesting that the lexicographic minimax problem is more
sensitive to the quality of input data than the p-median problem and the adaptive aggregation framework
brings here larger benefits. The versions V2 and V3 provide solutions of comparable quality, with slight
improvements in ΦGINI that are in favour of V3. However, V2 requires less computational time. Thus, the
experiments on the benchmark Žilina confirm that the effect of the elimination of source errors is very small.
The lexicographic minimax problem is computationally significantly more demanding than the p-median
problem and the benchmark Slovakia aggregated to the level of individual municipalities is already close to
the limit of what the algorithm A-LEX can compute (Buzna et al., 2014). Therefore, we did not apply the
adaptive aggregation framework to this benchmark.

5. Conclusions

We proposed the concept of the adaptive aggregation framework,which integrates the solving methods,
aggregation, elimination and minimization of aggregation errors and iteratively re-aggregates the solved
problem. To validate its benefits, we applied it to two location-allocation problems that use different basic
types of optimization criteria. Both these problems are NP hard (Garćıa et al., 2011; Ogryczak, 1997).
Solving methods, that we used in the phase 2, use as a component the exact algorithm ZEBRA. Thus, when
counting the number of operations as a function of problem parameters, the complexity of the adaptive
aggregation framework is NP. However, even algorithms with NP complexity can perform fast, if the problem
size is kept limited. This simple fact in combination with improvements in the quality of solutions that are
achieved when iteratively adapting the aggregated problem to high quality solutions are the primary causes
behind the benefits that the adaptive aggregation framework brings. We constituted our benchmarks in
a such way that we first compare the framework to the basic versions of solving algorithms to study the
performance of the framework using the problems that approach the upper limit of sensible computational
time. By the numerical experiments, we aim to reveal the importance of the individual phases as well as
the suitable parameter values. We derived the following main conclusions:
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• The adaptive aggregation framework outperforms the row-column aggregation method, algorithm ZE-
BRA and algorithm A-LEX, even when applying it to smaller (more aggregated) problems. Benefits
of the framework grow with the level of the used aggregation.

• Versions where the elimination of source errors is skipped and the value of the parameter ǫ̂ is adjusted
to the size of the problem (V1 for the p-median and V2 for the lexicographic minimax problem) are
the most suitable for large location-allocation problems. Thus, the re-aggregation of ADPs that are
identified in phases 4 and 5 is more beneficial than the elimination of the source errors (phases 1
and 3).

• Lexicographic minimax problem is more sensitive to the level of aggregation than the p-median prob-
lem. Thus, as expected, the magnitude of possible improvements that results from re-aggregation
is affected by the complexity of the problem. The combination of the detailed data model and the
adaptive aggregation framework enables to enhance the capabilities of conventional methods while
significantly improving the values of the performance indicators by 12-45% for the p-median and by
38-80% for the lexicographic minimax problem.

On one hand, it is important to note that such large gains in the quality of solutions could be reached
because we allow the facilities to be located at any DP of the original non-aggregated problem. This
corresponds to the standard definition of the selected location problems. Thus, when disaggregating the
problem, we do not only reduce the source errors but we also get more options where to locate the facilities.
This is also one of the reasons why we obtain solutions with more favourable values of the performance
indicators. In cases, when the set of the candidates for facility locations is more restricted, we can expect
that the gains will be smaller.

On the other hand, the p-median and lexicographic minimax problems represent archetypal location
problems, which integrate location and allocation decisions with the system efficiency and fairness objectives
giving us the main reason why we have selected them. In the case of more complex problems it is necessary to
enhance the mathematical formulation of the problem, which increases the computational complexity of the
solving algorithms and creates more incentives for data aggregation. Currently, the available tools usually do
not offer methods that can utilize the potential for improvements that is in the use of more accurate data by
re-aggregating them within the optimization process, and we do not observe a breakthrough in the available
optimization methods for NP-hard integer programming problems. Therefore, we believe that the concept
of the adaptive aggregation framework can find practical applications in various areas of engineering, where
large and detail datasets are more available than ever before.

Supporting information

File S1 Supplementary information file which includes complete tables with the numerical
values of the defined performance indicators.
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